Chin. Phys. Lett.  1998, Vol. 15 Issue (6): 398-400    DOI:
Original Articles |
Driving Signals Induced Synchronization
LIU Zong-hua1,2;CHEN Shi-gang3;ZHANG Guang-cai4
1Graduate School, China Academy of Engineering Physics, P. O. Box 8009, Beijing 100088 2Department of Physics, Guangxi University, Nanning 530004 3Institute of Applied Physics and Computational Mathematics, Beijing 100088 4Institute of Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Zong-hua, CHEN Shi-gang, ZHANG Guang-cai 1998 Chin. Phys. Lett. 15 398-400
Download: PDF(214KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The aim of the present work is to generalize the method introduced by Güémez et al. [Phys. Rev. E52 (1995) R2145] Using feedback scheme, two systems can be synchronized by signals or variables which come from the driving system. Furthermore, it is possible for the systems to be synchronized by different driving signals which come from the third or fourth system. So the unmasking procedure becomes more difficult. Numerical simulations are given.

Keywords: 05.45.+b      03.20.+i      46.10.+z     
Published: 01 June 1998
PACS:  05.45.+b  
  03.20.+i  
  46.10.+z  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I6/0398
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zong-hua
CHEN Shi-gang
ZHANG Guang-cai
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 398-400
[2] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 398-400
[3] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 398-400
[4] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 398-400
[5] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 398-400
[6] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 398-400
[7] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 398-400
[8] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 398-400
[9] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 398-400
[10] MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang. Stability of Motion of a Nonholonomic System[J]. Chin. Phys. Lett., 2007, 24(5): 398-400
[11] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 398-400
[12] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 398-400
[13] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 398-400
[14] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 398-400
[15] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 398-400
Viewed
Full text


Abstract