Chin. Phys. Lett.  1998, Vol. 15 Issue (4): 246-248    DOI:
Original Articles |
Scaling Properties of the Period-Adding Sequences in a Multiple Devil’s Staircase
WU Cai-yun1;QU Shi-xian2;WU Shun-guang3;HE Da-ren1,3,4
1Department of Physics, Teachers College, Yangzhou University, Yangzhou 225002 2Department of Basic Courses, Xi ‘an Petroleum Institute, Xi’ an 710065 3Department of Physics, Northwestern University, Xi ’an 710069 41nstitute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
WU Cai-yun, QU Shi-xian, WU Shun-guang et al  1998 Chin. Phys. Lett. 15 246-248
Download: PDF(193KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this letter the scaling properties of the period-adding sequences in a so-called “multiple Devil’s staircase” are reported. It is certified both analytically and numerically that the width of the i-th phase-locked plateau in a sequence scales as In |Δe(i)| ∝ i, and the position of the plateau scales as In |e -ei| ∝ i. These properties are qualitatively different from those of the period-adding sequences in conventional Devil’s staircases.
Keywords: 05.45.+b     
Published: 01 April 1998
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I4/0246
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Cai-yun
QU Shi-xian
WU Shun-guang
HE Da-ren
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 246-248
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 246-248
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 246-248
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 246-248
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 246-248
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 246-248
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 246-248
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 246-248
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 246-248
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 246-248
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 246-248
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 246-248
[13] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 246-248
[14] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 246-248
[15] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 246-248
Viewed
Full text


Abstract