Chin. Phys. Lett.  1998, Vol. 15 Issue (4): 238-239    DOI:
Original Articles |
Experimental System for Quantum Cryptography Based on Two Nonorthogonal Photon Polarization States
ZHANG Yong;DENG Le;MAO Min;DING Liang-en
Laboratory for Quantum Optics, National Education Commission, Department of Physics, East China Normal University, Shanghai 200062
Cite this article:   
ZHANG Yong, DENG Le, MAO Min et al  1998 Chin. Phys. Lett. 15 238-239
Download: PDF(203KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum cryptography allows the establishing of a highly confidential sequence of random bits between two parties who share no secret information in advance. Its security is guaranteed by the basic laws of quantum mechanics rather than mathematical difficulty. An experimental system based on a novel protocol for quantum cryptography using only two nonorthogonal photon polarization states is implemented. The photon sources are two semiconductor laser diodes operated at 680 nm, their light pulses which are heavily attenuated to far below one photon per pulse are employed to encode the key. Gated single photon detection technique is used to minimize the dark count effect of the photon multiplier tube. Key establishing rate of 40 b/s and error rate of 2.1 % are obtained. Compared with other systems, our system has the simplest experimental setup.
Keywords: 03.65.Bz      42.50.-p     
Published: 01 April 1998
PACS:  03.65.Bz  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I4/0238
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong
DENG Le
MAO Min
DING Liang-en
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 238-239
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 238-239
[3] LIU Yang, WU Jing-Hui, SHI Bao-Sen, GUO Guang-Can. Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth[J]. Chin. Phys. Lett., 2012, 29(2): 238-239
[4] HU Xin, LIU Gang-Qin, XU Zhang-Cheng, PAN Xin-Yu. Influence of Microwave Detuning on Ramsey Fringes of a Single Nitrogen Vacancy Center Spin in Diamond[J]. Chin. Phys. Lett., 2012, 29(2): 238-239
[5] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 238-239
[6] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 238-239
[7] MA Shan-Jun, XU Xue-Xiang. A New Approach for Constructing New Coherent-Entangled State Representations[J]. Chin. Phys. Lett., 2010, 27(9): 238-239
[8] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 238-239
[9] XIE Xiao-Peng, ZHUANG Wei, CHEN Jing-Biao. Adiabatic Passage Based on the Calcium Active Optical Clock[J]. Chin. Phys. Lett., 2010, 27(7): 238-239
[10] XUE Peng. A Controlled Phase Gate with Nitrogen-Vacancy Centers in Nanocrystal Coupled to a Silica Microsphere Cavity[J]. Chin. Phys. Lett., 2010, 27(6): 238-239
[11] GUO Yu, DENG Hong-Liang. Preparation of Cluster States of Atomic Qubits in Cavity QED[J]. Chin. Phys. Lett., 2010, 27(4): 238-239
[12] GENG Zhen-Duo, JIA Ning, ZHAO Xu, XIA Tian-Yu, JING Hui. Adiabatic Fidelity of Coherent Atom-Heteronuclear Molecule Conversion[J]. Chin. Phys. Lett., 2010, 27(3): 238-239
[13] Javaid Anwar. Phase Noise Quenching in a Four-Level Laser[J]. Chin. Phys. Lett., 2010, 27(3): 238-239
[14] SONG Jun, FAN Hong-Yi. Wavelet-Transform Spectrum for Quantum Optical States[J]. Chin. Phys. Lett., 2010, 27(2): 238-239
[15] WANG Chang-Chun**, FAN Hong-Yi, . Evolution of a Thermo Vacuum State in a Single-Mode Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(11): 238-239
Viewed
Full text


Abstract