Chin. Phys. Lett.  1998, Vol. 15 Issue (12): 862-864    DOI:
Original Articles |
Dwell Time of Particles in Tunneling Barriers of Arbitrary Shape
BAI Er-juan1;SHU Qi-qing2
1Institute of Applied Nuclear Technology, 2School of Science, Shenzhen University, Shenzhen 518060
Cite this article:   
BAI Er-juan, SHU Qi-qing 1998 Chin. Phys. Lett. 15 862-864
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a one-dimensional barrier of arbitrary shape, an expression of the dwell time of tunneling particles has been obtained by subdividing it into infinitesimal rectangular barrier elements and then summing the dwell times spent by particles inside the barrier elements, and the dwell times in a parabolic potential barrier were calculated. The results show that the dwell times are almost independent of the barrier width as it is greater than a characteristic width Wc. This can be ascribed that in the width range beyond Wc, the tunneling probabilities through the barrier elements are very small, thus the times taken to tunnel through them make little contribution to the summation of the dwell times in all the barrier elements.
Keywords: 03.65.-w      73.40.Gk     
Published: 01 December 1998
PACS:  03.65.-w (Quantum mechanics)  
  73.40.Gk (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I12/0862
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Er-juan
SHU Qi-qing
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 862-864
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 862-864
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 862-864
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 862-864
[5] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 862-864
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 862-864
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 862-864
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 862-864
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 862-864
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 862-864
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 862-864
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 862-864
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 862-864
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 862-864
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 862-864
Viewed
Full text


Abstract