Chin. Phys. Lett.  1997, Vol. 14 Issue (7): 499-502    DOI:
Original Articles |
Control of Unstable Periodic Orbit by Means of Projective Operator Method
LIU Zong-hua1;CHEN Shi-gang2
1Graduate School, China Academy of Engineering Physics, Beijing 100088, and Department of Physics, Guangxi University, Nanning 530004 2Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
LIU Zong-hua, CHEN Shi-gang 1997 Chin. Phys. Lett. 14 499-502
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We define the projective operators for controlling unstable periodic orbit(UPO), and project the eigenvectors of Jacobian matrix of a system in the direction of trajectory and in the direction perpendicular to the trajectory. Then the two eigenvalues in the perpendicular direction are changed to negative ones by adjusting the controlling parameter. So the control of UPO can be implemented. It is also shown that the procedure is effective even in the presence of noise.
Keywords: 05.45.+b      03.20.+i      46.10.+z     
Published: 01 July 1997
PACS:  05.45.+b  
  03.20.+i  
  46.10.+z  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I7/0499
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zong-hua
CHEN Shi-gang
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 499-502
[2] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 499-502
[3] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 499-502
[4] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 499-502
[5] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 499-502
[6] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 499-502
[7] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 499-502
[8] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 499-502
[9] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 499-502
[10] MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang. Stability of Motion of a Nonholonomic System[J]. Chin. Phys. Lett., 2007, 24(5): 499-502
[11] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 499-502
[12] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 499-502
[13] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 499-502
[14] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 499-502
[15] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 499-502
Viewed
Full text


Abstract