Chin. Phys. Lett.  1997, Vol. 14 Issue (3): 202-205    DOI:
Original Articles |
Dynamical Evolution of Highway Traffic Flow: from Microscopic to Macroscopic
WANG Bing-hong1;HUI Pak-ming2;GU Guo-qing3
1Department of Modern Physics and The Center of Nonlinear Science, University of Science and Technology of China, Hefei 230026 2Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 3Department of System Engineering, Shanghai University of Science and Technology, Shanghai 200093
Cite this article:   
WANG Bing-hong, HUI Pak-ming, GU Guo-qing 1997 Chin. Phys. Lett. 14 202-205
Download: PDF(230KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper, a derivation of the macroscopic mean field theory of the cellular automaton (CA) model of highway traffic flow starting from the microscopic dynamical point of view is presented. Starting from an equation describing the time evolution of the Boolean state variable at each site of the basic CA model, and using a two-site approximation for the multi-site correlation functions, a dynamical mapping between the macroscopic average speeds v(t + 1) and v ( t ) at different time can be derived. Mean field results consistent with the simulation data are obtained by considering the attractors of the mapping and their corresponding basins.
Keywords: 64.60.Ak      05.70.Jk      89.40.+k     
Published: 01 March 1997
PACS:  64.60.Ak  
  05.70.Jk (Critical point phenomena)  
  89.40.+k  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1997/V14/I3/0202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Bing-hong
HUI Pak-ming
GU Guo-qing
Related articles from Frontiers Journals
[1] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 202-205
[2] LU Yun-Bin, LIAO Shu-Zhi**, PENG Hao-Jun, ZHANG Chun, ZHOU Hui-Ying, XIE Hao-Wen, OUYANG Yi-Fang, ZHANG Bang-Wei, . Size Model of Critical Temperature for Grain Growth in Nano V and Au[J]. Chin. Phys. Lett., 2011, 28(8): 202-205
[3] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 202-205
[4] CHEN Xi-Qun, LI Li, JIANG Rui, YANG Xin-Miao. On the Intrinsic Concordance between the Wide Scattering Feature of Synchronized Flow and the Empirical Spacing Distributions[J]. Chin. Phys. Lett., 2010, 27(7): 202-205
[5] HU Bin, LI Fang, ZHOU Hou-Shun. Robustness of Complex Networks under Attack and Repair[J]. Chin. Phys. Lett., 2009, 26(12): 202-205
[6] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 202-205
[7] WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong. A Robustness Model of Complex Networks with Tunable Attack Information Parameter[J]. Chin. Phys. Lett., 2007, 24(7): 202-205
[8] CAI Jin-Ming, BAO Li-Hong, GUO Wei, CAI Li, HUAN Qing, LIAN Ji-Chun, GUO Hai-Ming, WANG Ke-Zhi, SHI Dong-Xia, PANG Shi-Jin, GAO Hong-Jun. Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System[J]. Chin. Phys. Lett., 2007, 24(10): 202-205
[9] GU Shi-Jian, TIAN Guang-Shan, LIN Hai-Qing. Pairwise Entanglement and Quantum Phase Transitions in Spin Systems[J]. Chin. Phys. Lett., 2007, 24(10): 202-205
[10] ZHANG Huan, LIU Zong-Hua, MA Wei-Chuan. Epidemic Propagation and Microscopic Structure of Complex Networks[J]. Chin. Phys. Lett., 2006, 23(4): 202-205
[11] WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model[J]. Chin. Phys. Lett., 2006, 23(2): 202-205
[12] LI Ping, XIONG Xing, QIAO Zhong-Liang, YUAN Gang-Qiang, SUN Xing, WANG Bing-Hong. Topological Properties of Urban Public Traffic Networks in Chinese Top-Ten Biggest Cities[J]. Chin. Phys. Lett., 2006, 23(12): 202-205
[13] PAN Gui-Jun, ZHANG Duan-Ming, YIN Yan-Ping, HE Min-Hua. Avalanche Dynamics in Quenched Random Directed Sandpile Models[J]. Chin. Phys. Lett., 2006, 23(10): 202-205
[14] B. Kutlu, M. Civi. Critical Finite Size Scaling Relation of the Order-Parameter Probability Distribution for the Three-Dimensional Ising Model on the Creutz Cellular Automaton[J]. Chin. Phys. Lett., 2006, 23(10): 202-205
[15] WANG Lin-Cheng, CUI Hai-Tao, YI Xue-Xi. Decoherence Induced by Spin Chain Environment[J]. Chin. Phys. Lett., 2006, 23(10): 202-205
Viewed
Full text


Abstract