Chin. Phys. Lett.  1996, Vol. 13 Issue (4): 241-244    DOI:
Original Articles |
A Note on Calculation of Threshold Resonance by the Method of Complex Scaling
ZHAO Mei-shan1;XIE Xi-shun
1The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA Department of Physics, University of Minnesota, Minneapolis, Minnesota 55455, USA and Department of Physics, Southeastern University, Nanjing. 210096
Cite this article:   
ZHAO Mei-shan, XIE Xi-shun 1996 Chin. Phys. Lett. 13 241-244
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new approach to threshold resonance calculation by the complex scaling method is discussed. Application to scattering over a model potential barrier is presented and compared to a direct quantum scattering calculation.
Keywords: 03.65.Ca      35.20.Yh     
Published: 01 April 1996
PACS:  03.65.Ca (Formalism)  
  35.20.Yh  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1996/V13/I4/0241
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Mei-shan
XIE Xi-shun
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 241-244
[2] FAN Hong-Yi, CHEN Jun-Hua, WANG Tong-Tong. Squeezing-Displacement Dynamics for One-Dimensional Potential Well with Two Mobile Walls where Wavefunctions Vanish[J]. Chin. Phys. Lett., 2010, 27(5): 241-244
[3] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 241-244
[4] Koji Nagata. Bell Operator Method to Classify Local Realistic Theories[J]. Chin. Phys. Lett., 2010, 27(3): 241-244
[5] FAN Hong-Yi, JIANG Nian-Quan. Relation between Characteristic Function of Density Operator and Tomogram[J]. Chin. Phys. Lett., 2009, 26(11): 241-244
[6] XU Xue-Fen, ZHU Shi-Qun. Wigner Function of Thermo-Invariant Coherent State[J]. Chin. Phys. Lett., 2008, 25(8): 241-244
[7] WANG Zhi-Yong, XIONG Cai-Dong, Keller Ole. The First-Quantized Theory of Photons[J]. Chin. Phys. Lett., 2007, 24(2): 241-244
[8] CHEN Jing-Bo. Multisymplectic Geometry and Its Applications for the Schrodinger Equation in Quantum Mechanics[J]. Chin. Phys. Lett., 2007, 24(2): 241-244
[9] Babayev A. M., Cakmaktepe S.. The Singular Kane Oscillator[J]. Chin. Phys. Lett., 2006, 23(1): 241-244
[10] ZHANG Yong, CAO Wan-Cang, LONG Gui-Lu,. Creation of Multipartite Entanglement and Entanglement Transfer via Heisenberg Interaction[J]. Chin. Phys. Lett., 2005, 22(9): 241-244
[11] B. Gö, nül. Exact Treatment of l ≠ 0 States[J]. Chin. Phys. Lett., 2004, 21(9): 241-244
[12] B.Gö, nül. Generalized Supersymmetric Perturbation Theory[J]. Chin. Phys. Lett., 2004, 21(12): 241-244
[13] HOU Guang, HUANG Min-Xin, ZHANG Yong-De,. Quantum Multiple Access Channel[J]. Chin. Phys. Lett., 2002, 19(1): 241-244
[14] FAN Hong-Yi, CHENG Hai-Ling. Two-Parameter Radon Transformation of the Wigner Operator and Its Inverse[J]. Chin. Phys. Lett., 2001, 18(7): 241-244
[15] FAN Hong-Yi, LIU Nai-Le. Mixed Squeezing for a Pair of Two-Mode Squeezed States[J]. Chin. Phys. Lett., 2001, 18(3): 241-244
Viewed
Full text


Abstract