Chin. Phys. Lett.  1995, Vol. 12 Issue (3): 129-131    DOI:
Original Articles |
Hopf Structure for a Two-Parameter Deformed Boson Oscillator Algebra
ZHOU Huanqiang1,2;GUAN Xiwen2;HE Jingsong2
1Center of Theoretical Physics, CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 2Department of Physics, Sichuan Normal University, Chengdu 610068
Cite this article:   
ZHOU Huanqiang, GUAN Xiwen, HE Jingsong 1995 Chin. Phys. Lett. 12 129-131
Download: PDF(5844KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Hopf algebraic structure, i. e. , comultiplication, coinverse and counit, is presented for a two-parameter deformed boson oscillator algebra. This result shows that the two-parameter deformed boson oscillator algebra is a Hopf algebra which is neither commutative nor cocommutative.
Keywords: 02.10.-v      03.65.-w     
Published: 01 March 1995
PACS:  02.10.-v (Logic, set theory, and algebra)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1995/V12/I3/0129
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Huanqiang
GUAN Xiwen
HE Jingsong
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 129-131
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 129-131
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 129-131
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 129-131
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 129-131
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 129-131
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 129-131
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 129-131
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 129-131
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 129-131
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 129-131
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 129-131
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 129-131
[14] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 129-131
[15] XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics[J]. Chin. Phys. Lett., 2010, 27(9): 129-131
Viewed
Full text


Abstract