Chin. Phys. Lett.  1995, Vol. 12 Issue (2): 95-97    DOI:
Original Articles |
Existence of Localized Modes in a Purely Anharmonic Chain
WANG Shaofeng
Department of Physics, Xian Jiaotong University, Xian 710049
Cite this article:   
WANG Shaofeng 1995 Chin. Phys. Lett. 12 95-97
Download: PDF(149KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a monatomic one-dimensional chain of particles interacting via a nearest-neighbor purely anharmonic potential of any even order (such a chain is called purely anharmonic chain), it is proved that there really exist exact localized modes.
Keywords: 03.20.Pw      63.20.Ry      05.45.+b     
Published: 01 February 1995
PACS:  03.20.Pw  
  63.20.Ry (Anharmonic lattice modes)  
  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1995/V12/I2/095
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Shaofeng
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 95-97
[2] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J]. Chin. Phys. Lett., 2010, 27(2): 95-97
[3] LIAO Shu-Zhi, WANG Xiao-Li, ZHU Xiang-Ping, ZHANG Chun, OUYANG Yi-Fang, ZHANG Bang-Wei,. The MAEAM Model and Anharmonic Theory for the Bulk Modulus of Al Metal[J]. Chin. Phys. Lett., 2009, 26(8): 95-97
[4] XU Quan, QIANG Tian. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice[J]. Chin. Phys. Lett., 2009, 26(7): 95-97
[5] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 95-97
[6] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 95-97
[7] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 95-97
[8] XU Quan, TIAN Qiang. On Some Classes of New Solutions of Continuous β-FPU Chain[J]. Chin. Phys. Lett., 2008, 25(7): 95-97
[9] XU Quan, TIAN Qiang. Two-Dimensional Discrete Gap Breathers in a Two-Dimensional Diatomic β Fermi--Pasta--Ulam Lattice[J]. Chin. Phys. Lett., 2008, 25(10): 95-97
[10] XU Quan, TIAN Qiang. Existence and Stability of Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(8): 95-97
[11] XU Quan, TIAN Qiang. Multi-site Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(12): 95-97
[12] XU Quan, TIAN Qiang. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices[J]. Chin. Phys. Lett., 2007, 24(12): 95-97
[13] WEN Zhen-Ying, ZHAO Hong, WANG Shun-Jin, ZHANG Xiu-Ming. Effect of Nonlinearity on Scattering Dynamics of Solitary Waves[J]. Chin. Phys. Lett., 2006, 23(8): 95-97
[14] XU Hai-Qing, TANG Yi. Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity[J]. Chin. Phys. Lett., 2006, 23(6): 95-97
[15] WEN Zhen-Ying, ZHAO Hong. Different Types of Solitary Wave Scattering in the Fermi--Pasta--Ulam Model[J]. Chin. Phys. Lett., 2005, 22(6): 95-97
Viewed
Full text


Abstract