Chin. Phys. Lett.  1995, Vol. 12 Issue (11): 641-644    DOI:
Original Articles |
Torsion Pendulum Method in Viscosity Measurement of Melts
HONG Xinguo1;LU Kunquan2
1Research and Development Laboratory of Scientific Instrument, OSTC, Academia Sinica, Beijing 100081 2Institute of Physics, Academia Sinica, Beijing 100080
Cite this article:   
HONG Xinguo, LU Kunquan 1995 Chin. Phys. Lett. 12 641-644
Download: PDF(0KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this paper we present the results of our preliminary study on the improvements of torsion pendulum in order to make it suitable for the viscosity measurement of melt at high temperature. The amplitude features of conventional torsion pendulum and our method have been compared at room temperature and at high temperature, respectively. The relationship between the damping factor and the kinematical viscosity is derived and discussed. The viscous properties of molten KNbO3 and molten Li2B8O13 at high temperatures in air are measured with this method.

Keywords: 06.20.Dk      51.20.+d      61.50.Cj     
Published: 01 November 1995
PACS:  06.20.Dk (Measurement and error theory)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  61.50.Cj  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1995/V12/I11/0641
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HONG Xinguo
LU Kunquan
Related articles from Frontiers Journals
[1] CHEN Shi-Qiang, WANG Hai-Xing. Transport Properties of Lithium Plasma[J]. Chin. Phys. Lett., 2012, 29(2): 641-644
[2] DU Bao-Qiang, ZHOU Wei, YU Jian-Guo, DONG Shao-Feng . On Group Phase Quantization and Its Physical Characteristics[J]. Chin. Phys. Lett., 2011, 28(5): 641-644
[3] DU Bao-Qiang, ZHOU Wei, DONG Shao-Feng, ZHOU Hai-Niu. A Group-Period Phase Comparison Method Based on Equivalent Phase Comparison Frequency[J]. Chin. Phys. Lett., 2009, 26(7): 641-644
[4] ZHAO Jia-Fei, LUO Zhong-Yang, NI Ming-Jiang, CEN Ke-Fa. Dependence of Nanofluid Viscosity on Particle Size and pH Value[J]. Chin. Phys. Lett., 2009, 26(6): 641-644
[5] ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong, SONG Hong-Zhang, CHENG Li-Hong, HUI Sen-Xing, YIN Qing-Rui. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2009, 26(10): 641-644
[6] DU Bao-Qiang, ZHOU Wei. Super-High Resolution Time Interval Measurement Method Based on Time-Space Relationships[J]. Chin. Phys. Lett., 2009, 26(10): 641-644
[7] LI Zhi-Qi, ZHOU Wei, MIAO Miao, ZHOU Hui, ZHENG Sheng-Feng. A Super High Resolution Distance Measurement Method Based on Phase Comparison[J]. Chin. Phys. Lett., 2008, 25(8): 641-644
[8] LIU Hui, HOU De-Fu, LI Jia-Rong. Shear Viscosity to Non-Equilibrium Entropy Density Ratio of Hot Quark--Gluon Plasma at Finite Chemical Potential[J]. Chin. Phys. Lett., 2007, 24(5): 641-644
[9] D. AKBAR, S. BILIKMEN. Ambipolar Diffusion in Direct-Current Positive Column with Variations in Radius of Discharge Tube[J]. Chin. Phys. Lett., 2006, 23(9): 641-644
[10] PAN Shi-Long, LOU Cai-Yun. Theoretical Design of Fibre-Based Digital Autocorrelator for Completely Characterizing Ultrashort Pulses[J]. Chin. Phys. Lett., 2006, 23(2): 641-644
[11] KANG Zhi-Ru, FU Guang-Sheng, K. D. Hill. Equations of Propagation of Uncertainty on the ITS-90 in the Sub-ranges from 13.8033K to 933.473K[J]. Chin. Phys. Lett., 2005, 22(3): 641-644
[12] ZHOU Zi-Xiang. An observation of Relationship between the Fine Structure Constant and the Gibbs Phenomenon in Fourier Analysis[J]. Chin. Phys. Lett., 2004, 21(2): 641-644
[13] WANG En-Ke. Nonperturbative Calculation of Shear Viscosity from the Basis of the Keldysh Field in Thermal Ф4 Theory[J]. Chin. Phys. Lett., 2002, 19(8): 641-644
[14] SUN Cheng-Hai. Thermal Lattice Boltzmann Model for Compressible Fluid[J]. Chin. Phys. Lett., 2000, 17(3): 641-644
[15] SUN Cheng-Hai. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice[J]. Chin. Phys. Lett., 2000, 17(10): 641-644
Viewed
Full text


Abstract