Chin. Phys. Lett.  1994, Vol. 11 Issue (10): 593-596    DOI:
Original Articles |
New Exact Solutions of the CDGSK Equation Related to a Non-local Symmetry
LOU Senyue*;RUAN Hangyu;CHEN Weizhong;WANG Zhenli;CHEN Lili
*Fudan-T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433; and Institute of Modern Physics, Ningbo Normal College, Ningbo 315211 (mailing address) Institute of Modern Physics, Ningbo Normal College, Ningbo 315211
Cite this article:   
LOU Senyue, RUAN Hangyu, CHEN Weizhong et al  1994 Chin. Phys. Lett. 11 593-596
Download: PDF(161KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A non-local symmetry of the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation has been used for finding exact solution in two different ways. Firstly, using the standard prolongation approach, we obtain the finite Lie Bäcklund transformation and the single soliton solution. Secondly, combining some local symmetries and the nonlocal symmetry, we get the group invariant solution which is described by the Weierstrass elliptic function and is deduced to the so-called interacting soliton for a special parameter.
Keywords: 03.40.-t      02.20.-a     
Published: 01 October 1994
PACS:  03.40.-t  
  02.20.-a (Group theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1994/V11/I10/0593
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LOU Senyue
RUAN Hangyu
CHEN Weizhong
WANG Zhenli
CHEN Lili
Related articles from Frontiers Journals
[1] YAO Ruo-Xia, LOU Sen-Yue,. A Maple Package to Compute Lie Symmetry Groups and Symmetry Reductions of (1+1)-Dimensional Nonlinear Systems[J]. Chin. Phys. Lett., 2008, 25(6): 593-596
[2] B. A. Tay, Hishamuddin Zainuddin. Orbit Classification of Qutrit via the Gram Matrix[J]. Chin. Phys. Lett., 2008, 25(6): 593-596
[3] M. T. Chefrour. Algebraic Treatment of the MIC-Kepler System in Spherical Coordinates[J]. Chin. Phys. Lett., 2007, 24(8): 593-596
[4] WANG Li-Zhen, GOU Ming, QU Chang-Zheng,. Conditional Lie Backlund Symmetries of Hamilton--Jacobi Equations[J]. Chin. Phys. Lett., 2007, 24(12): 593-596
[5] TIAN Li-Jun, YANG Guo-Hong, ZHANG Hong-Biao, HOU Jing-Min. Reduced Properties and Applications of Y(sl(2)) Algebra for a Two-Spin System[J]. Chin. Phys. Lett., 2006, 23(7): 593-596
[6] S. A. Alavi. General Noncommuting Curvilinear Coordinates and Fluid Mechanics[J]. Chin. Phys. Lett., 2006, 23(10): 593-596
[7] TIAN Li-Jun, JIN Shuo, ZHANG Hong-Biao, XUE Kang. A Realization and Truncation of Yangian Algebra in the Generalized Hydrogen Atom with a U(1) Monopole[J]. Chin. Phys. Lett., 2004, 21(5): 593-596
[8] ZHANG Jie-Fang, , MENG Jian-Ping. New Coherent Structures in the Generalized (2+1)-Dimensional Nizhnik-Novikov-Veselov System[J]. Chin. Phys. Lett., 2003, 20(7): 593-596
[9] XU Jing-Bo, ZOU Xu-Bo. Dynamical Algebraic Approach to the Modified Jaynes-Cummings Model[J]. Chin. Phys. Lett., 2001, 18(1): 593-596
[10] BAO Cheng-Guang, SHI Ting-Yun. Qualitative Analysis of Low-Lying Resonances of the Dipositronium Emerging from Ps-Ps and Ps-Ps* Collisions[J]. Chin. Phys. Lett., 2000, 17(5): 593-596
[11] BAO Cheng-Guang. A Qualitative Analysis of Channel Wave Functions and Widths of the Low-lying States of 6Li[J]. Chin. Phys. Lett., 2000, 17(1): 593-596
[12] BAO Cheng-guang, SHI Ting-yun. Existence of Two Higher L=0 Bound States of the Dipositroniums[J]. Chin. Phys. Lett., 1999, 16(4): 593-596
[13] SU Ka-lin. The Most General Corrdinate Transformation Between the Hydrogen Atom and Harmonic Oscillator in Arbitrary Dimensions[J]. Chin. Phys. Lett., 1997, 14(10): 593-596
[14] LOU Sen-yue, CHEN Li-li, WU Qi-xian. New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation[J]. Chin. Phys. Lett., 1997, 14(1): 593-596
[15] PAN Feng, DAI Lian-rong. General Deformed Oscillators[J]. Chin. Phys. Lett., 1997, 14(1): 593-596
Viewed
Full text


Abstract