Chin. Phys. Lett.  1993, Vol. 10 Issue (6): 321-324    DOI:
Original Articles |
Controlling Chaos Using Modified Lyapunov Exponents
TAN Yi;HE Xiantu (X. T. He);CHEN Shigang (S. G. Chen)
Center for Nonlinear Studies, Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
TAN Yi, HE Xiantu (X. T. He), CHEN Shigang (S. G. Chen) 1993 Chin. Phys. Lett. 10 321-324
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We suggested a method using a small perturbation to modify Lyapunov exponents of the unstable periodic orbit for controlling chaos. The benefit of this control scheme is studied and the effect of noise is discussed. Based on these studies, a more practical control method is recommended, and some experiments can be better understanded.
Keywords: 05.45.+b      03.20.+i     
Published: 01 June 1993
PACS:  05.45.+b  
  03.20.+i  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1993/V10/I6/0321
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Yi
HE Xiantu (X. T. He)
CHEN Shigang (S. G. Chen)
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 321-324
[2] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 321-324
[3] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 321-324
[4] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 321-324
[5] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 321-324
[6] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 321-324
[7] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 321-324
[8] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 321-324
[9] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 321-324
[10] MEI Feng-Xiang, XIE Jia-Fang, GANG Tie-Qiang. Stability of Motion of a Nonholonomic System[J]. Chin. Phys. Lett., 2007, 24(5): 321-324
[11] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 321-324
[12] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 321-324
[13] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 321-324
[14] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 321-324
[15] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 321-324
Viewed
Full text


Abstract