Chin. Phys. Lett.  1992, Vol. 9 Issue (8): 393-396    DOI:
Original Articles |
Finite Size Corrections for One Dimensional Interacting Fermions
LIU Yimin;PU Fuque(Fu-Cho Pu);SU Hang
Institute of Physics, Academia Sinica, Beijing 100080
Cite this article:   
LIU Yimin, PU Fuque(Fu-Cho Pu), SU Hang 1992 Chin. Phys. Lett. 9 393-396
Download: PDF(200KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the method based on the Euler-Maclaurin formula, we calculate the finitesize correction to the energy of the ground state and the excited state for the delta interacting fermion gas in the periodic boundary condition with N - 1 of the N fermions having the same spin and one having the opposite spin. In the thermodynamic limit, we obtain the conformal anomaly, operator dimension and the correlation functions.

Keywords: 05.30.Ch      05.30.Jp      05.70.Jh     
Published: 01 August 1992
PACS:  05.30.Ch (Quantum ensemble theory)  
  05.30.Jp (Boson systems)  
  05.70.Jh  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1992/V9/I8/0393
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yimin
PU Fuque(Fu-Cho Pu)
SU Hang
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 393-396
[2] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 393-396
[3] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 393-396
[4] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 393-396
[5] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 393-396
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 393-396
[7] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 393-396
[8] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 393-396
[9] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 393-396
[10] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 393-396
[11] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 393-396
[12] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 393-396
[13] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 393-396
[14] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 393-396
[15] QIAN Jun, QIAN Yong, KE Min, YAN Bo, CHENG Feng, ZHOU Shu-Yu, WANG Yu-Zhu. Single-Qubit Operations for Singlet-Triplet Qubits in an Isolated Double-Well with Fixed Tunneling[J]. Chin. Phys. Lett., 2010, 27(10): 393-396
Viewed
Full text


Abstract