Chin. Phys. Lett.  1992, Vol. 9 Issue (2): 61-64    DOI:
Original Articles |
Soliton Chain Solutions to the Two-Dimensional Higher Order Korteweg de Vries Equations of Lax Hierarchy
WU Ying;YANG Xiaoxue
Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
WU Ying, YANG Xiaoxue 1992 Chin. Phys. Lett. 9 61-64
Download: PDF(168KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The two-dimensional higher order Korteweg de Vries equations of Lax hierarchy are constructed. Their soliton chain solutions are derived by Hirota'sbilinear transformation method, and the various variants of the soliton chainsolutions are investigated in some details.

Keywords: 03.40.Kf     
Published: 01 February 1992
PACS:  03.40.Kf  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1992/V9/I2/061
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ying
YANG Xiaoxue
Related articles from Frontiers Journals
[1] YUAN Jin-Hui, YU Chong-Xiu, SANG Xin-Zhu, LI Wen-Jing, ZHOU Gui-Yao, LI Shu-Guang, HOU Lan-Tian. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths[J]. Chin. Phys. Lett., 2009, 26(3): 61-64
[2] ZHA Qi-Lao, LI Zhi-Bin. Periodic Wave Solutions of Generalized Derivative Nonlinear Schrödinger Equation[J]. Chin. Phys. Lett., 2008, 25(11): 61-64
[3] ZHA Qi-Lao, LI Zhi-Bin. Darboux Transformation and Multi-Solitons for Complex mKdV Equation[J]. Chin. Phys. Lett., 2008, 25(1): 61-64
[4] WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel[J]. Chin. Phys. Lett., 2007, 24(10): 61-64
[5] LIN Ji, CHENG Xue-Ping, YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media[J]. Chin. Phys. Lett., 2006, 23(1): 61-64
[6] XU You-Sheng, ZHONG Yi-Jun, HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media[J]. Chin. Phys. Lett., 2004, 21(7): 61-64
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 61-64
[8] XU You-Sheng, , LIU Yang, HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2004, 21(12): 61-64
[9] QU Chang-Zheng, YAO Ruo-Xia, LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions[J]. Chin. Phys. Lett., 2004, 21(11): 61-64
[10] ZHENG Chun-Long, , ZHANG Jie-Fang, HUANG Wen-Hua, CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System[J]. Chin. Phys. Lett., 2003, 20(6): 61-64
[11] ZHANG Jie-Fang, ZHENG Chun-Long, MENG Jian-Ping, FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System[J]. Chin. Phys. Lett., 2003, 20(4): 61-64
[12] ZHENG Chun-Long, , ZHANG Jie-Fang, SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System[J]. Chin. Phys. Lett., 2003, 20(3): 61-64
[13] LIU Yin-Ping, LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations[J]. Chin. Phys. Lett., 2003, 20(3): 61-64
[14] WANG Feng-Jiao, TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre[J]. Chin. Phys. Lett., 2003, 20(10): 61-64
[15] DUAN Wen-Shan, HONG Xue-Ren, SHI Yu-Ren, LU Ke-Pu, SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear Transmission Lines[J]. Chin. Phys. Lett., 2002, 19(9): 61-64
Viewed
Full text


Abstract