Chin. Phys. Lett.  1991, Vol. 8 Issue (3): 114-117    DOI:
Original Articles |
Solutions of Dirac Equation with One-Dimensional Scalarlike Potential
SU Rukeng1;ZHONG Yu2; HU Sizhu
Department of Physics, Fudan University, Shanghai 200433 1China Center of Advanced Science and Technology (World Laboratory), P. O. Box 8730, Beijing 2East China Institute for Theoretical Physics, Shanghai 200237
Cite this article:   
SU Rukeng, ZHONG Yu, HU Sizhu 1991 Chin. Phys. Lett. 8 114-117
Download: PDF(172KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract After introducing an unitary transformation to decouple the correlations of the different components of the Dirace equation, we found the exact solutions of the Dirace equation with a finite size linear scalarlike potential analytically. The transmission amplitude and the reflection amplitude are given.
Keywords: 03.65.-w      12.40.Qq     
Published: 01 March 1991
PACS:  03.65.-w (Quantum mechanics)  
  12.40.Qq  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1991/V8/I3/0114
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Rukeng
ZHONG Yu
HU Sizhu
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 114-117
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 114-117
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 114-117
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 114-117
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 114-117
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 114-117
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 114-117
[8] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 114-117
[9] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 114-117
[10] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 114-117
[11] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 114-117
[12] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 114-117
[13] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 114-117
[14] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 114-117
[15] XU Xue-Fen, ZHU Shi-Qun. From the Thermo Wigner Operator to the Thermo Husimi Operator in Thermo Field Dynamics[J]. Chin. Phys. Lett., 2010, 27(9): 114-117
Viewed
Full text


Abstract