Chin. Phys. Lett.  1990, Vol. 7 Issue (8): 337-340    DOI:
Original Articles |
YANG-BAXTER EQUATION, ALGEBRAS AND BRAID GROUP FOR THE Zn-SYMMETRIC STATISTICAL MODEL
WEI Hua;HOU Boyu
Institute of Modern Physics, Northwest University, Xian, 710069
Cite this article:   
WEI Hua, HOU Boyu 1990 Chin. Phys. Lett. 7 337-340
Download: PDF(48KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For the Zn-symmetric statistical model the Yang-Baxter equation and the equations for the operator representations is reduced to explicit spectroparameter-independent forms, and the quantum algebra for the representations is obtained. Moreover, we present some elliptic representations of braid group, which include a new trigonometric representation as degenerated case.

Keywords: 05.20.-y      02.20.+b      64.60.Cn     
Published: 01 August 1990
PACS:  05.20.-y (Classical statistical mechanics)  
  02.20.+b  
  64.60.Cn (Order-disorder transformations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1990/V7/I8/0337
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Hua
HOU Boyu
Related articles from Frontiers Journals
[1] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 337-340
[2] SHEN Jing. Condensation of Self-Driven Particles in Scale-Free Networks[J]. Chin. Phys. Lett., 2010, 27(2): 337-340
[3] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 337-340
[4] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 337-340
[5] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 337-340
[6] ZOU Zhi-Yun, MAO Bao-Hua, HAO Hai-Ming, GAO Jian-Zhi, YANG Jie-Jiao. Regular Small-World Network[J]. Chin. Phys. Lett., 2009, 26(11): 337-340
[7] HUA Da-Yin. Dynamics of Symmetric Conserved Mass Aggregation Model on Complex Networks[J]. Chin. Phys. Lett., 2009, 26(1): 337-340
[8] LU Chang-Hong, SHI Qing-Fan, YANG Lei, SUN Gang. Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities[J]. Chin. Phys. Lett., 2008, 25(7): 337-340
[9] H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(7): 337-340
[10] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 337-340
[11] GUO Qiang, LIU Jian-Guo, WANG Bing-Hong, ZHOU Tao, CHEN Xing-Wen, YAO Yu-Hua. Opinion Spreading with Mobility on Scale-Free Networks[J]. Chin. Phys. Lett., 2008, 25(2): 337-340
[12] SHEN Dan, WANG Wen-Xiu, JIANG Yu-Mei, HE Yue, HE Da-Ren. Response to Disturbance and Abundance of Final State: a Measure for Complexity?[J]. Chin. Phys. Lett., 2007, 24(7): 337-340
[13] N. Seferoglu, B. Kutlu. Critical Exponents for the Re-entrant Phase Transitions in the Three-Dimensional Blume--Emery--Griffiths Model on the Cellular Automaton[J]. Chin. Phys. Lett., 2007, 24(7): 337-340
[14] YAMG Meng-Long, LIU Yi-Guang, YOU Zhi-Sheng. A New Cellular Automata Model Considering Finite Deceleration and Braking Distance[J]. Chin. Phys. Lett., 2007, 24(10): 337-340
[15] N. Seferoglu, A. Ö, zkan, B. Kutlu. Finite Size Effect for the First-Order Phase Transition of the Three-Dimensional Blume--Capel Model on a Cellular Automaton[J]. Chin. Phys. Lett., 2006, 23(9): 337-340
Viewed
Full text


Abstract