Chin. Phys. Lett.  2019, Vol. 36 Issue (2): 027401    DOI: 10.1088/0256-307X/36/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influence of Precursor Powder Fabrication Methods on the Superconducting Properties of Bi-2223 Tapes
Li-Jun Cui1,2, Ping-Xiang Zhang1,2,3**, Guo Yan2, Yong Feng2, Xiang-Hong Liu2, Jian-Feng Li2, Xi-Feng Pan2, Sheng-Nan Zhang3, Xiao-Bo Ma3, Jin-Shan Li1
1State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
2National Engineering Laboratory for Superconducting Materials, Western Superconducting Technologies Co. Ltd., Xi'an 710018
3Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi'an 710016
Cite this article:   
Li-Jun Cui, Ping-Xiang Zhang, Guo Yan et al  2019 Chin. Phys. Lett. 36 027401
Download: PDF(1267KB)   PDF(mobile)(1265KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bi-2223 precursor powders are prepared by both oxalate co-precipitation (CP) and spray pyrolysis (SP) methods. The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore, the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.
Received: 14 August 2018      Published: 22 January 2019
PACS:  74.25.F- (Transport properties)  
  74.25.Sv (Critical currents)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/2/027401       OR      https://cpl.iphy.ac.cn/Y2019/V36/I2/027401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Jun Cui
Ping-Xiang Zhang
Guo Yan
Yong Feng
Xiang-Hong Liu
Jian-Feng Li
Xi-Feng Pan
Sheng-Nan Zhang
Xiao-Bo Ma
Jin-Shan Li
[1]Wang W G, Bain P A, Horvat J, Zeimetz B, Guo Y C, Liu H K and Dou S X 1996 Supercond. Sci. Technol. 9 881
[2]Grasso G, Jeremie A and Flükigre R 1995 Supercond. Sci. Technol. 8 827
[3]Sotelo A, Majewski P, Park H S and Aldinger F 1996 Physicas C 272 115
[4]Jiang J and Abell J S 1998 Supercond. Sci. Technol. 11 705
[5]Yoo J, Ko J, Su X D, Kim H and Chung H 2001 IEEE Trans. Appl. Supercond. 11 3549
[6]Kim W J, Kwon S C, Lee H J, Lee H G, Hong G W and Kuk I H 1998 Physica C 294 147
[7]Yoo J, Ko J, Kang S, Kim H, Jiang C H and Chung H 2002 Physica C 372 1005
[8]Bai L F, Zhang S N, Li C S, Hao Q B, Liu G Q and Zhang P X 2016 J. Mater. Sci.: Mater. Electron. 27 8862
[9]Li C S, Zhang P X, Yu Z M, Zheng H L, Xiong X M, Liu Y S, Wang Q Y, Liu F S, Wu Y F and Zhou L 2003 Physica C 386 127
[10]Cui L J, Zhang P X, Li J S, Yan G, Wang D Y, Pan X F, Liu G Q, Hao Q B, Liu X H and Feng Y 2016 IEEE Trans. Appl. Supercond. 26 1
[11]Yoo J, Ko J W, Kim Y K and Chung K C 2005 IEEE Trans. Appl. Supercond. 15 2474
[12]Yoo J, Kim S W, Ko J W and Kim Y K 2004 Supercond. Sci. Technol. 17 S538
[13]Hsueh Y W, Chang S C, Liu R S, Woodall L and Gerards M 2001 Mater. Res. Bull. 36 1653
[14]Li Q, Broderson K, Hjuler H A and Freltoft T 1993 Physica C 217 360
[15]Jiang J and Abell J S 1998 Physica C 296 13
[16]Jeremie A and Flukiger R 1994 IEEE Trans. Appl. Supercond. 30 1883
[17]Mark O, André W, Severine A, Zimmer M and Bock J 2005 IEEE Trans. Appl. Supercond. 15 2499
Related articles from Frontiers Journals
[1] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 027401
[2] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 027401
[3] Jin Zhao, Yu-Lin Gan, Guang Yang, Yi-Gui Zhong, Cen-Yao Tang, Fa-Zhi Yang, Giao Ngoc Phan, Qiang-Tao Sui, Zhong Liu, Gang Li, Xiang-Gang Qiu, Qing-Hua Zhang, Jie Shen, Tian Qian, Li Lu, Lei Yan, Gen-Da Gu, and Hong Ding. Continuously Doping Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$ into Electron-Doped Superconductor by CaH$_{2}$ Annealing Method[J]. Chin. Phys. Lett., 2022, 39(7): 027401
[4] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 027401
[5] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 027401
[6] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 027401
[7] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 027401
[8] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 027401
[9] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 027401
[10] Wei-Ke Wang, Yan Liu, Ji-Yong Yang, Hai-Feng Du, Wei Ning, Lang-Sheng Ling, Wei Tong, Zhe Qu, Zhao-Rong Yang, Ming-Liang Tian, Yu-Heng Zhang. The 45K Onset Superconductivity and the Suppression of the Nematic Order in FeSe by Electrolyte Gating[J]. Chin. Phys. Lett., 2016, 33(05): 027401
[11] WANG Pei-Pei, XUE Mian-Qi, LONG Yu-Jia, ZHAO Ling-Xiao, CAI Yao, YANG Huai-Xin, LI Jian-Qi, REN Zhi-An, CHEN Gen-Fu. Superconductivity in Pd-Intercalated Ternary Rare-Earth Polychalcogenide NdSeTe2[J]. Chin. Phys. Lett., 2015, 32(11): 027401
[12] YI He-Mian, CHEN Chao-Yu, SUN Xuan, XIE Zhuo-Jin, FENG Ya, LIANG Ai-Ji, PENG Ying-Ying, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, GU Gen-Da, ZHOU Xing-Jiang. Electronic Structure, Irreversibility Line and Magnetoresistance of Cu0.3Bi2Se3 Superconductor[J]. Chin. Phys. Lett., 2015, 32(06): 027401
[13] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 027401
[14] ZHANG Wen-Hao, SUN Yi, ZHANG Jin-Song, LI Fang-Sen, GUO Ming-Hua, ZHAO Yan-Fei, ZHANG Hui-Min, PENG Jun-Ping, XING Ying, WANG Hui-Chao, FUJITA Takeshi, HIRATA Akihiko, LI Zhi, DING Hao, TANG Chen-Jia, WANG Meng, WANG Qing-Yan, HE Ke, JI Shuai-Hua, CHEN Xi, WANG Jun-Feng, XIA Zheng-Cai, LI Liang, WANG Ya-Yu, WANG Jian, WANG Li-Li, CHEN Ming-Wei, XUE Qi-Kun, MA Xu-Cun. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films[J]. Chin. Phys. Lett., 2014, 31(1): 027401
[15] MA Yong-Chang, YAN Qian, ZHAO Jie, LU Cui-Min. The Observation of Small Polaron Tunnelling in the ab-Plane of K0.85Fe1.66Se2.0[J]. Chin. Phys. Lett., 2013, 30(10): 027401
Viewed
Full text


Abstract