CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures |
Zong-Peng Song1,2,3, Hai-Ou Zhu4, Wen-Tao Shi1,2,3, Da-Lin Sun1,2,3, Shuang-Chen Ruan1** |
1Shenzhen Key Laboratory of Laser Engineering, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 2Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen University, Shenzhen 518060 3Guangdong Provincial Key Laboratory of Mico/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060 4College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118
|
|
Cite this article: |
Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi et al 2018 Chin. Phys. Lett. 35 127801 |
|
|
Abstract Using dual graphene–WS$_{2}$ quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS$_{2}$ to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively affect the interlayer electron transfer. This effect illustrates that the charge transfer in such van der Waals heterostructures may be controlled by an externally applied electric field for promising applications in photoelectric devices.
|
|
Received: 16 July 2018
Published: 23 November 2018
|
|
PACS: |
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
78.47.jb
|
(Transient absorption)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
42.70.-a
|
(Optical materials)
|
|
|
Fund: Supported by the National Key Research and Development Program under Grant No 2016YFA0401100, the National Natural Science Foundation of China under Grant No 61575129, the National High Technology Research and Development Program of China under Grant No 2015AA021102, and the Major Science and Technology Project of Guangdong Province under Grant No 2140B010131006. |
|
|
[1] | Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802 | [2] | He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803 | [3] | Cunningham P D, Hanbicki A T, Mccreary K M and Jonker B T 2017 ACS Nano 11 12601 | [4] | Echeverry J P, Urbaszek B, Am, T, Marie X and Gerber I C 2016 Phys. Rev. B 93 121107 | [5] | Zhang X X, You Y M, Zhao S Y and Heinz T F 2015 Phys. Rev. Lett. 115 257403 | [6] | Sun D Z, Rao Y, Reider G A, Chen G, You Y, Brézin L, Harutyunyan A R and Heinz T F 2014 Nano Lett. 14 5625 | [7] | Chernikov A, Ruppert C, Hill H M, Rigosi A F and Heinz T F 2015 Nat. Photon. 9 466 | [8] | Geim A K and Grigorieva I V 2013 Nature 499 419 | [9] | Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042 | [10] | Novoselov K S, Mishchenko A, Carvalho A and Castro N A H 2016 Science 353 9439 | [11] | Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664 | [12] | Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602 | [13] | Yu W J, Liu Y, Zhou H L, Yin A, Li Z, Huang Y and Duan X 2013 Nat. Nanotechnol. 8 952 | [14] | De F D, Goykhman I, Yoon D, Bruna M, Eiden A, Milana S, Sassi U, Barbone M, Dumcenco D and Marinov K 2016 ACS Nano 10 8252 | [15] | Tan H J, Fan Y, Zhou Y Q, Qu C, Xu W and Warner J H 2016 ACS Nano 10 7866 | [16] | Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826 | [17] | Choi M S, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J and Yoo W J 2013 Nat. Commun. 4 1624 | [18] | Yu W J, Li Z, Zhou H L, Chen Y, Wang Y, Huang Y and Duan X 2013 Nat. Mater. 12 246 | [19] | Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L and Morozov S V 2012 Science 335 947 | [20] | Shanmugam M, Jacobs-Gedrim R, Song E S and Yu B 2014 Nanoscale 6 12682 | [21] | Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T and Morozov S V 2013 Science 340 1311 | [22] | He J Q, Kumar N, Bellus M Z, Chiu H Y, He D, Wang Y and Zhao H 2014 Nat. Commun. 5 5622 | [23] | He J Q, He D W, Wang Y S and Zhao H 2017 Opt. Express 25 1949 | [24] | Hill H M, Rigosi A F, Raja A, Chernikov A, Roquelet C and Heinz T F 2017 Phys. Rev. B 96 205401 | [25] | Zhu X Y, Monahan N R, Gong Z Z, Zhu H, Williams K W and Nelson C A 2015 J. Am. Chem. Soc. 137 8313 | [26] | Long R and Prezhdo O V 2016 Nano Lett. 16 1996 | [27] | Wang H, Bang J, Sun Y Y, Liang L, West D, Meunier V and Zhang S 2016 Nat. Commun. 7 11504 | [28] | Yu Y J, Zhao Y, Ryu S, Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430 | [29] | Zhao W J, Ghorannevis Z, Chu L Q, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791 | [30] | Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Nat. Mater. 11 764 | [31] | Yuan L, Chung T F, Kuc A, Wan Y, Xu Y, Chen Y P, Heine T and Huang L 2018 Sci. Adv. 4 e1700324 | [32] | Ruppert C, Chernikov A, Hill H M, Rigosi A F and Heinz T F 2017 Nano Lett. 17 644 | [33] | Cunningham P D, McCreary K M and Jonker B T 2016 J. Phys. Chem. Lett. 7 5242 | [34] | Wang H N, Zhang C J, Chan W M, Manolatou C, Tiwari S and Rana F 2016 Phys. Rev. B 93 045407 | [35] | Li Y Y, Cui Q N, Ceballos F, Lane S D, Qi Z and Zhao H 2017 Nano Lett. 17 6661 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|