Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 083201    DOI: 10.1088/0256-307X/35/8/083201
ATOMIC AND MOLECULAR PHYSICS |
Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber
Chuan-Biao Zhang1,2, Dian-Qiang Su1,2, Zhong-Hua Ji1,2, Yan-Ting Zhao1,2**, Lian-Tuan Xiao1,2, Suo-Tang Jia1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji et al  2018 Chin. Phys. Lett. 35 083201
Download: PDF(973KB)   PDF(mobile)(964KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanofibers have many promising applications because of their advantages of high power density and ultralow saturated light intensity. We present here a Zeeman shift of the Doppler-broadened cesium D$_2$ transition using a tapered optical nanofiber in the presence of a magnetic field. When a weak magnetic field is parallel to the propagating light in the nanofiber, the Zeeman shift rates for different circularly polarized spectra are observed. For the $\sigma^{+}$ component, the typical linear Zeeman shift rates of $F=3$ and $F=4$ ground-state cesium atoms are measured to be 3.10($\pm$0.19) MHz/G and 3.91($\pm$0.16) MHz/G. For the $\sigma^{-}$ component, the values are measured to be $-$2.81($\pm$0.25) MHz/G, and $-$0.78($\pm$0.28) MHz/G. The Zeeman shift using the tapered nanofiber can help to develop magnetometers to measure the magnetic field at the narrow local region and the dispersive signal to lock laser frequency.
Received: 17 May 2018      Published: 15 July 2018
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.10.Fn (Fine and hyperfine structure)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Supported by National Key Research and Development Program of China under Grant No 2017YFA0304203, the National Natural Science Foundation of China under Grant Nos 61675120 and 11434007, the National Natural Science Foundation of China for Excellent Research Team under Grant No 61121064, the Shanxi Scholarship Council of China, the 1331KSC, the PCSIRT under Grant No IRT13076, and the Applied Basic Research Project of Shanxi Province under Grant No 201601D202008.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/083201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/083201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan-Biao Zhang
Dian-Qiang Su
Zhong-Hua Ji
Yan-Ting Zhao
Lian-Tuan Xiao
Suo-Tang Jia
[1]Wang X Z, Li Y and Bao X Y 2009 Appl. Opt. 48 6827
[2]Fenton E F, Khan A, Solano P, Orozco L A and Fredrik K F 2018 Opt. Lett. 43 1534
[3]Cao Y C, Jin W, Ho L H and Liu Z B 2012 Opt. Lett. 37 214
[4]Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[5]Li Y and Hu Y J 2013 Chin. Phys. B 22 34206
[6]Spillane S M, Pati G S, Salit K, Hall M, Kumar P, Beausoleil R G and Shahriar M S 2008 Phys. Rev. Lett. 100 233602
[7]Thapa R, Knabe K, Faheem M, Naweed A, Weaver O L and Corwin K L 2006 Opt. Lett. 31 2489
[8]Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92 043806
[9]Hendrickson S M, Lai M M, Pittman T B and Franson J D 2010 Phys. Rev. Lett. 105 173602
[10]Salit K, Salit M, Krishnamurthy S, Wang Y, Kumar P and Shahriar M S 2011 Opt. Express 19 22874
[11]Bize S, Laurent P, Abgrall M, Marion H et al 2005 J. Phys. B 38 S449
[12]Balykin V I, Hakuta K, Le K F, Liang J Q and Morinaga M 2004 Phys. Rev. A 70 011401
[13]Laurent P, Abgrall M, Jentsch C, Lemonde P, Santarelli G, Clairon A, Maksimovic I et al 2006 Appl. Phys. B 84 683
[14]Beverini N, Maccioni E, Marsili P, Ruffini A and Sorrentino F 2001 Appl. Phys. B 73 133
[15]King P W and Learner R C M 1971 Proc. R. Soc. London Ser. A 323 431
[16]Treutlein P, Hommelhoff P, Steinmetz T, Hänsch T W and Reichel J 2004 Phys. Rev. Lett. 92 203005
[17]Watkins A, Tiwari V B, Jonathan M, Ward J M, Deasy K and Chormaic S N 2013 Proc. SPIE 8785 87850S
[18]Sorensen H L, Polzik E S and Appel J 2014 J. Lightwave Technol. 32 1886
[19]Wiedemann U, Karapetyan K, Dan C, Pritzkau D, Alt W, Irsen S and Meschede D 2010 Opt. Express 18 7693
[20]Hoffman J E, Ravets S, Grover J A, Solano P, Kordell P R, Wong J D, Orozco L A and Rolston S L 2014 AIP Adv. 4 067124
[21]Morrissey M J, Deasy K, Wu Y Q, Chakrabarti S and Chormaic S N 2009 Rev. Sci. Instrum. 80 053102
[22]Davidson I A, Azzouz H, Hueck K and Bourennane M 2016 Rev. Sci. Instrum. 87 053104
[23]Lai M M, Franson J D and Pittman T B 2013 Appl. Opt. 52 2595
[24]Gunawardena M, Hess P W, Strait J and Majumder P K 2008 Rev. Sci. Instrum. 79 103110
[25]Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[26]Smith D A and Hughes I G 2004 Am. J. Phys. 72 631
[27]Lindvall T and Tittonen I 2009 Phys. Rev. A 80 032505
[28]Lobov G S, Marinins A, Etcheverry S, Zhao Y C, Vasileva E, Sugunan A, Laurell F, Thylén L, Wosinski L, Östling M, Toprak M S and Popov S 2017 Opt. Mater. Express 7 52
[29]Dawkins S T, Mitsch R, Reitz D, Vetsch E and Rauschenbeutel A 2011 Phys. Rev. Lett. 107 243601
[30]Jung Y M, Brambilla G and Richardson D J 2010 Opt. Lett. 35 2034
[31]Takeshi I, Shinichi O and Motoichi O 1989 Jpn. J. Appl. Phys. 28 L1839
[32]Corwin K L, Lu Z T, H, C F, Epstein R J and Wieman C E 1998 Appl. Opt. 37 3295
Related articles from Frontiers Journals
[1] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 083201
[2] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 083201
[3] Ben-quan Lu, Yebing Wang, Yang Guo, Qinfang Xu, Mojuan Yin, Jiguang Li, Hong Chang. Experimental Determination of the Landé $g$-Factors for 5$s^{2}$$^{1}\!S$ and $5s5p$$^{3}\!P$ States of the $^{87}$Sr Atom[J]. Chin. Phys. Lett., 2018, 35(4): 083201
[4] Kai Chen, Zheng Hu, Qing-Hui Wang, Xiao-Hua Yang. Zeeman Effect of the Rovibronic Ground State of I$^{35}$Cl at Hyperfine Level[J]. Chin. Phys. Lett., 2017, 34(10): 083201
[5] Qiang Wang, Yi-Ge Lin, Fei Meng, Ye Li, Bai-Ke Lin, Er-Jun Zang, Tian-Chu Li, Zhan-Jun Fang. Magic Wavelength Measurement of the $^{87}$Sr Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2016, 33(10): 083201
[6] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 083201
[7] YU Geng-Hua, XU Qi-Ming, ZHOU Chao, DUAN Cheng-Bo, LI Long, CHAI Rui-Peng. Magic Wavelengths of the Optical Clock Transition at 1107 nm of Barium[J]. Chin. Phys. Lett., 2015, 32(03): 083201
[8] YANG Hai-Feng, GAO Wei, CHENG Hong, LIU Hong-Ping. Electron Dynamics of Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(10): 083201
[9] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 083201
[10] ZHAO Yun-Hui, PAN Yi-Qing, LI Wen-Juan, DENG Xia, HAI Wen-Hua. Variational-Integral Perturbation Corrections for Hydrogen Atoms in Magnetic Fields[J]. Chin. Phys. Lett., 2013, 30(1): 083201
[11] WANG Yuan-Sheng, XIA Chang-Long, GUO Jing**, LIU Xue-Shen** . Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse[J]. Chin. Phys. Lett., 2011, 28(8): 083201
[12] YU Geng-Hua, , ZHONG Jia-Qi, , LI Run-Bing, WANG Jin, ZHAN Ming-Sheng, ** . Magic Wavelength of an Optical Clock Transition of Barium[J]. Chin. Phys. Lett., 2011, 28(7): 083201
[13] LI Guo-Hui, XU Xin-Ye** . Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 083201
[14] HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Polarization Gradient Cooling by Zeeman-Effect-Assisted Saturated Absorption[J]. Chin. Phys. Lett., 2009, 26(12): 083201
[15] WANG De-Hua, HUANG Kai-Yun. Coherent Control of Photodetachment of H- in Perpendicular Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2009, 26(9): 083201
Viewed
Full text


Abstract