Chin. Phys. Lett.  2018, Vol. 35 Issue (8): 083101    DOI: 10.1088/0256-307X/35/8/083101
ATOMIC AND MOLECULAR PHYSICS |
Lithium/Silver-Doped Cu$_{2}$ZnSnS$_{4}$ with Tunable Band Gaps and Phase Structures: a First-Principles Study
Jun Zhang1, Jun Liao1, Le-Xi Shao1, Shu-Wen Xue1**, Zhi-Guo Wang2**
1School of Physical Science and Technology, Lingnan Normal University, Zhanjiang 524048
2School of Electronics Science and Engineering, Center for Public Security Technology, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
Jun Zhang, Jun Liao, Le-Xi Shao et al  2018 Chin. Phys. Lett. 35 083101
Download: PDF(1504KB)   PDF(mobile)(1493KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Doping is an effective approach for improving the photovoltaic performance of Cu$_{2}$ZnSnS$_{4}$ (CZTS). The doping by substitution of Cu atoms in CZTS with Li and Ag atoms is investigated using density functional theory. The results show that the band gaps of Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ and Ag$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ can be tuned in the ranges of 1.30–3.43 and 1.30–1.63 eV, respectively. The calculation also reveals a phase transition from kesterite to wurtzite-kesterite for Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ as $x$ is larger than 0.9. The tunable band gaps of Li$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ and Ag$_{2x}$Cu$_{2(1-x)}$ZnSnS$_{4}$ make them beneficial for achieving band-gap-graded solar cells.
Received: 18 April 2018      Published: 15 July 2018
PACS:  31.15.A- (Ab initio calculations)  
  71.55.Gs (II-VI semiconductors)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 61674073, the Science and Technology Planning Project of Guangdong Province under Grant No 2017A050506056, the Key Basic and Applied Research Project of Guangdong Province under Grant No 2016KZDXM021, and the Project of International as well as Hongkong, Macao and Taiwan Science and Technology Cooperation Innovation Platform in Universities in Guangdong Province under Grant No 2015KGJHZ028.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/8/083101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I8/083101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jun Zhang
Jun Liao
Le-Xi Shao
Shu-Wen Xue
Zhi-Guo Wang
[1]Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[2]Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y and Mitzi D B 2014 Adv. Energy Mater. 4 1301465
[3]Sun K, Yan C, Liu F, Huang J, Zhou F, Stride J A, Green M and Hao X 2016 Adv. Energy Mater. 6 1600046-n/a
[4]Scragg J J S, Choubrac L, Lafond A, Ericson T and Platzer-Björkman C 2014 Appl. Phys. Lett. 104 041911
[5]Altamura G, Wang M and Choy K L 2016 Sci. Rep. 6 22109
[6]Pianezzi F, Reinhard P, Chirila A, Bissig B, Nishiwaki S, Buecheler S and Tiwari A N 2014 Phys. Chem. Chem. Phys. 16 8843
[7]Han M, Zhang X and Zeng Z 2017 Phys. Chem. Chem. Phys. 19 17799
[8]Su Z, Tan J M R, Li X, Zeng X, Batabyal S K and Wong L H 2015 Adv. Energy Mater. 5 1500682
[9]Khadka D B, Kim S and Kim J 2016 J. Phys. Chem. C 120 4251
[10]Yang Y, Kang X, Huang L, Wei S and Pan D 2015 J. Phys. Chem. C 119 22797
[11]H L A I N G Oo W M, Johnson J L, Bhatia A, Lund E A, Nowell M M and Scarpulla M A 2011 J. Electron. Mater. 40 2214
[12]Ananthoju B, Mohapatra J, Jangid M K, Bahadur D, Medhekar N V and Aslam M 2016 Sci. Rep. 6 35369
[13]Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R and Gershon T S 2016 J. Chem. Phys. 144 104704
[14]Guchhait A, Su Z, Tay Y F, Shukla S, Li W, Leow S W, Tan J M R, Lie S, Gunawan O and Wong L H 2016 ACS Energy Lett. 1 1256
[15]Lafond A, Guillot-Deudon C, Vidal J, Paris M, La C and Jobic S 2017 Inorg. Chem. 56 2712
[16]Ford G M, Guo Q, Agrawal R and Hillhouse H W 2011 Chem. Mater. 23 2626
[17]Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[18]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19]Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[20]Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[21]Chen S, Gong X G, Walsh A and Wei S H 2009 Phys. Rev. B 79 165211
[22]Chen S, Walsh A, Luo Y, Yang J H , Gong X G and Wei S H 2010 Phys. Rev. B 82 195203
[23]Zhong G, Tse K, Zhang Y, Li X, Huang L, Yang C, Zhu J, Zeng Z, Zhang Z and Xiao X 2016 Thin Solid Films 603 224
[24]Yuan Z G, Cheng S Y, Xiang H J, Gong X G, Walsh A, Park J S, Repins I and Wei S H 2015 Adv. Funct. Mater. 25 6733
[25]Peng H and Lany S 2013 Phys. Rev. B 87 174113
[26]Bai Y, Zhang Q, Luo G, Bu Y, Zhu L, Fan L and Wang B 2017 Phys. Chem. Chem. Phys. 19 15394
[27]Xiao W, Wang J N, Zhao X S, Wang J W, Huang G J, Cheng L, Jiang L J and Wang L G 2015 Sol. Energy 116 125
[28]Elaheh G, Hossein M, Janos K and Claudia F 2015 J. Phys. D 48 482001
[29]Kumar M, Zhao H and Persson C 2013 Thin Solid Films 535 318
[30]Wang W, Shen H L, Jin J L, Li J Z and Ma Y 2015 Chin. Phys. B 24 056805
[31]Zhao Z and Zhao X 2015 J. Semicond. 36 083004
[32]Qi Y F, Kou D X, Zhou W H, Zhou Z J, Tian Q W, Meng Y N, Liu X S, Du Z L and Wu S X 2017 Energy Environ. Sci. 10 2401
Related articles from Frontiers Journals
[1] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 083101
[2] Qing Liu, Jiguang Li, Jianguo Wang, and Yizhi Qu. Effect of Electron Correlation and Breit Interaction on Energies, Oscillator Strengths, and Transition Rates for Low-Lying States of Helium[J]. Chin. Phys. Lett., 2021, 38(11): 083101
[3] Shuai Qin, Cong-Zhang Gao, Wandong Yu, and Yi-Zhi Qu. Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory[J]. Chin. Phys. Lett., 2021, 38(6): 083101
[4] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 083101
[5] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 083101
[6] Guo-Ping Qin, Hong Zhang, Hai-Bo Ruan, Jiang Wang, Dong Wang, Chun-Yang Kong. Effect of Post-Annealing on Structural and Electrical Properties of ZnO:In Films[J]. Chin. Phys. Lett., 2019, 36(4): 083101
[7] Ayoub Kanaani, Mohammad Vakili, Davood Ajloo, Mehdi Nekoei. Current–Voltage Characteristics of the Aziridine-Based Nano-Molecular Wires: a Light-Driven Molecular Switch[J]. Chin. Phys. Lett., 2018, 35(4): 083101
[8] Hui-Yan Zhao, Hong-Man Ma, Jing Wang, Ying Liu. Eu@Sc$_{20}$C$_{60}$: Magnetic Volleyballene[J]. Chin. Phys. Lett., 2016, 33(10): 083101
[9] Chun Gu, Rui Jin, De-Ling Zeng, Xian-Fang Yue, Xiang Gao, Jia-Ming Li. Interesting Features of Ionization Potentials for Elements ($Z\le 119$) along the Periodic Table[J]. Chin. Phys. Lett., 2016, 33(04): 083101
[10] LEI Hui, TAN Xun-Qiong. A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device[J]. Chin. Phys. Lett., 2015, 32(02): 083101
[11] CHEN Yu-Hong, ZHANG Bing-Wen, ZHANG Cai-Rong, ZHANG Mei-Ling, KANG Long, LUO Yong-Chun. First-Principle Study of H2 Adsorption on Mg3N2(110) Surface[J]. Chin. Phys. Lett., 2014, 31(06): 083101
[12] ZHANG Dong, LIN Liang-Zhong, ZHU Jia-Ji. Electronic Structures of Carbon-Based Kagomé Lattices[J]. Chin. Phys. Lett., 2014, 31(2): 083101
[13] SHENG Chun-Qi, WANG Peng, SHEN Ying, LI Wen-Jie, ZHANG Wen-Hua, ZHU Jun-Fa, LAI Guo-Qiao, LI Hong-Nian. Electronic States of IC60BA and PC71BM[J]. Chin. Phys. Lett., 2013, 30(11): 083101
[14] XUE Shu-Wen, CHEN Jian, ZHANG Jun. Self-Healing of Stone–Wales Defects in Boron Nitride Monolayer by Irradiation: Ab Initio Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2013, 30(10): 083101
[15] HU Shi-Lin, ZHAO Zeng-Xiu, SHI Ting-Yun. Alignment-Dependent Ionization of CO2 in the Intense Laser Fields: Single-Active-Electron Approach[J]. Chin. Phys. Lett., 2013, 30(10): 083101
Viewed
Full text


Abstract