Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077102    DOI: 10.1088/0256-307X/35/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Band Structures of Ultrathin Bi(110) Films on Black Phosphorus Substrates Using Angle-Resolved Photoemission Spectroscopy
Sailong Ju1, Maokun Wu2, Hao Yang3, Naizhou Wang4, Yingying Zhang1, Peng Wu1, Pengdong Wang1, Bo Zhang1, Kejun Mu1, Yaoyi Li3, Dandan Guan3, Dong Qian3, Feng Lu2, Dayong Liu5, Wei-Hua Wang2**, Xianhui Chen4, Zhe Sun**
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029
2Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071
3Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
4Hefei National Laboratory for Physical Science at Microscale and Department of Physics, and Key Laboratory of Strongly Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026
5Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
Sailong Ju, Maokun Wu, Hao Yang et al  2018 Chin. Phys. Lett. 35 077102
Download: PDF(2307KB)   PDF(mobile)(2297KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The band structures of two-monolayer Bi(110) films on black phosphorus substrates are studied using angle-resolved photoemission spectroscopy. Within the band gap of bulk black phosphorus, the electronic states near the Fermi level are dominated by the Bi(110) film. The band dispersions revealed by our data suggest that the orientation of the Bi(110) film is aligned with the black phosphorus substrate. The electronic structures of the Bi(110) film strongly deviate from the band calculations of the free-standing Bi(110) film, suggesting that the substrate can significantly affect the electronic states in the Bi(110) film. Our data show that there are no non-trivial electronic states in Bi(110) films grown on black phosphorus substrates.
Received: 04 April 2018      Published: 24 June 2018
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.20.At (Surface states, band structure, electron density of states)  
  79.60.Dp (Adsorbed layers and thin films)  
Fund: Supported by National Key R&D Program of China under Grant Nos 2017YFA0402901, 2016YFA0401004 and 2016YFB0901600, the National Natural Science Foundation of China under Grant Nos 11534010, 11404172, U1532136, U1632102, U1632272, 11574201, 11674296 and 11190022, the National Basic Research Program of China under Grant No 2014CB921102, the Key Research Program of the Chinese Academy of Sciences under Grant Nos QYZDY-SSW-SLH021 and XDPB01, the Interdisciplinary Innovation Team of Chinese Academy of Sciences, and the Initiative Scientific Research Program of Shanghai Jiao Tong University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sailong Ju
Maokun Wu
Hao Yang
Naizhou Wang
Yingying Zhang
Peng Wu
Pengdong Wang
Bo Zhang
Kejun Mu
Yaoyi Li
Dandan Guan
Dong Qian
Feng Lu
Dayong Liu
Wei-Hua Wang
Xianhui Chen
Zhe Sun
[1]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2]Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
[3]König M et al 2007 Science 318 766
[4]Knez I, Du R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[5]Reis F et al 2017 Science 357 287
[6]Nagao T et al 2004 Phys. Rev. Lett. 93 105501
[7]Scott S A, Kral M V and Brown S A 2005 Surf. Sci. 587 175
[8]Hirahara T et al 2011 Phys. Rev. Lett. 107 166801
[9]Sun J et al 2012 Phys. Rev. Lett. 109 246804
[10]Pang F et al 2010 Chin. Phys. Lett. 27 107102
[11]Yin S, Liang X and Zhao H 2013 Chin. Phys. Lett. 30 087305
[12]Gao C et al 2013 Chin. Phys. B 22 067304
[13]Pang F 2015 Chin. Phys. Lett. 32 027402
[14]Zhu K et al 2016 Chin. Phys. B 25 087303
[15]Yang F et al 2012 Phys. Rev. Lett. 109 016801
[16]Drozdov I K et al 2014 Nat. Phys. 10 664
[17]Ygainuma S et al 2007 Surf. Sci. 601 3593
[18]Bian G, Miller T and Chiang T 2009 Phys. Rev. B 80 245407
[19]Bian G et al 2014 Phys. Rev. B 90 195409
[20]Lu Y et al 2015 Nano Lett. 15 80
[21]Li S et al 2017 ACS Appl. Mater. Interfaces 9 21515
[22]Takao Y and Morita A 1981 Physica B+C 105 93
[23]Asahina H, Shindo K and Morita A 1982 J. Phys. Soc. Jpn. 51 1193
[24]Keyes R W 1953 Phys. Rev. 92 580
[25]Warschauer D 1963 J. Appl. Phys. 34 1853
[26]Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[27]Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[28]Peng X, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[29]Brown A and Rundqvist S 1965 Acta Cryst. 19 684
[30]Li L et al 2014 Nat. Nanotechnol. 9 372
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 077102
[2] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 077102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 077102
[4] Xin Gao, Jian Sun, Xiangang Wan, and Gang Li. Competition of Quantum Anomalous Hall States and Charge Density Wave in a Correlated Topological Model[J]. Chin. Phys. Lett., 2022, 39(7): 077102
[5] Sheng Wang, Zia ur Rehman, Zhanfeng Liu, Tongrui Li, Yuliang Li, Yunbo Wu, Hongen Zhu, Shengtao Cui, Yi Liu, Guobin Zhang, Li Song, and Zhe Sun. Tailoring of Bandgap and Spin-Orbit Splitting in ZrSe$_{2}$ with Low Substitution of Ti for Zr[J]. Chin. Phys. Lett., 2022, 39(7): 077102
[6] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 077102
[7] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 077102
[8] Yiqing Hao, Yiqing Gu, Yimeng Gu, Erxi Feng, Huibo Cao, Songxue Chi, Hua Wu, and Jun Zhao. Magnetic Order and Its Interplay with Structure Phase Transition in van der Waals Ferromagnet VI$_{3}$[J]. Chin. Phys. Lett., 2021, 38(9): 077102
[9] Wei-Feng Zhuang, Yue-Xin Huang, and Ming Gong. Angular Momentum Josephson Effect between Two Isolated Condensates[J]. Chin. Phys. Lett., 2021, 38(6): 077102
[10] Jianting Ji, Mengjie Sun, Yanzhen Cai, Yimeng Wang, Yingqi Sun, Wei Ren, Zheng Zhang, Feng Jin, and Qingming Zhang. Rare-Earth Chalcohalides: A Family of van der Waals Layered Kitaev Spin Liquid Candidates[J]. Chin. Phys. Lett., 2021, 38(4): 077102
[11] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 077102
[12] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 077102
[13] Jin-Hua Wang, Ya-Min Quan, Da-Yong Liu, Liang-Jian Zou. Ferromagnetism in Layered Metallic Fe$_{1/4}$TaS$_{2}$ in the Presence of Conventional and Dirac Carriers[J]. Chin. Phys. Lett., 2020, 37(1): 077102
[14] PANG Fei. Magneto-Transport Properties of Insulating Bulk States in Bi(111) Films[J]. Chin. Phys. Lett., 2015, 32(02): 077102
[15] SUN Jin-Fang, CHENG Fang. Tuning Out-of-Plane Spin Polarization Using in-Plane Magnetic Fields in a Quasi-One-Dimensional Quantum Wire Embedded in (110) Plane[J]. Chin. Phys. Lett., 2014, 31(03): 077102
Viewed
Full text


Abstract