Chin. Phys. Lett.  2018, Vol. 35 Issue (7): 077101    DOI: 10.1088/0256-307X/35/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological Invariants in Terms of Green's Function for the Interacting Kitaev Chain
Zhidan Li1, Qiang Han1,2**
1Department of Physics, Renmin University of China, Beijing 100872
2Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872
Cite this article:   
Zhidan Li, Qiang Han 2018 Chin. Phys. Lett. 35 077101
Download: PDF(708KB)   PDF(mobile)(704KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A one-dimensional closed interacting Kitaev chain and the dimerized version are studied. The topological invariants in terms of Green's function are calculated by the density matrix renormalization group method and the exact diagonalization method. For the interacting Kitaev chain, we point out that the calculation of the topological invariant in the charge density wave phase must consider the dimerized configuration of the ground states. The variation of the topological invariant is attributed to the poles of eigenvalues of the zero-frequency Green functions. For the interacting dimerized Kitaev chain, we show that the topological invariant defined by Green's functions can distinguish more topological nonequivalent phases than the fermion parity.
Received: 12 February 2018      Published: 24 June 2018
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.20.-z (Theories and models of superconducting state)  
  75.10.Pq (Spin chain models)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11274379, and the Research Funds of Renmin University of China under Grant No 14XNLQ07.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/7/077101       OR      https://cpl.iphy.ac.cn/Y2018/V35/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhidan Li
Qiang Han
[1]Kitaev A Y 2001 Phys. Usp. 44 131
[2]Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[3]Alicea J 2012 Rep. Prog. Phys. 75 076501
[4]Stoudenmire E M, Alicea J, Starykh O A and Fisher M P A 2011 Phys. Rev. B 84 014503
[5]Gangadharaiah S, Braunecker B, Simon P and Loss D 2011 Phys. Rev. Lett. 107 036801
[6]Hassler F and Schuricht D 2012 New J. Phys. 14 125018
[7]Thomale R, Rachel S and Schmitteckert P 2013 Phys. Rev. B 88 161103(R)
[8]Chan Y H, Chiu C K and Sun K 2015 Phys. Rev. B 92 104514
[9]Katsura H, Schuricht D and Takahashi M 2015 Phys. Rev. B 92 115137
[10]Rahmani A, Zhu X, Franz M and Affleck I 2015 Phys. Rev. Lett. 115 166401
[11]Gergs N M, Fritz L and Schuricht D 2016 Phys. Rev. B 93 075129
[12]Miao J J, Jin H K, Zhang F C and Zhou Y 2017 Phys. Rev. Lett. 118 267701
[13]Volovik G E 2003 The Universe in a Helium Droplet (New York: Oxford University Press)
[14]Wang Z, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 105 256803
[15]Wang Z, Qi X L and Zhang S C 2012 Phys. Rev. B 85 165126
[16]Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008
[17]Wang Z and Zhang S C 2012 Phys. Rev. B 86 165116
[18]Gurarie V 2011 Phys. Rev. B 83 085426
[19]Manmana S R, Essin A M, Noack R M and Gurarie V 2012 Phys. Rev. B 86 205119
[20]Wang Z and Yan B 2013 J. Phys.: Condens. Matter 25 155601
[21]Yoshida T, Peters R, Fujimoto S and Kawakami N 2014 Phys. Rev. Lett. 112 196404
[22]Slager R J, Rademaker L, Zaanen J and Balents L 2015 Phys. Rev. B 92 085126
[23]Ng H T 2015 Sci. Rep. 5 12530
[24]Pinheiro F, Bruun G M, Martikainen J P and Larson J 2013 Phys. Rev. Lett. 111 205302
[25]White S 1992 Phys. Rev. Lett. 69 2863
[26]White S 1993 Phys. Rev. B 48 10345
[27]Schollwöck U 2005 Rev. Mod. Phys. 77 259
[28]Zubarev D N 1960 Phys. Usp. 3 320
[29]Wakatsuki R, Ezawa M, Tanaka Y and Nagaosa N 2014 Phys. Rev. B 90 014505
Related articles from Frontiers Journals
[1] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 077101
[2] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 077101
[3] Zhidan Li, Qiang Han. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling[J]. Chin. Phys. Lett., 2018, 35(4): 077101
[4] Lu-Bing Shao, Zi-Dan Wang, Rui Shen, Li Sheng, Bo-Gen Wang, Ding-Yu Xing. Controlling Fusion of Majorana Fermions in One-Dimensional Systems by Zeeman Field[J]. Chin. Phys. Lett., 2017, 34(6): 077101
[5] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 077101
[6] ZHANG Yin-Han, SHI Jun-Ren. Density Functional Theory of Composite Fermions[J]. Chin. Phys. Lett., 2015, 32(03): 077101
[7] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 077101
[8] PENG De-Jun, CHENG Fang, ZHOU Guang-Hui,. Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire[J]. Chin. Phys. Lett., 2007, 24(2): 077101
[9] CHENG Kuan, LIU Yu-Liang. Numerical Study of Luttinger Liquid Regime of Two-Leg Hubbard Ladders[J]. Chin. Phys. Lett., 2005, 22(9): 077101
[10] Z. Bentalha, M. Tahiri, B. Liani. One-Dimensional Anyon Lattice and slq(2) Algebra Realization[J]. Chin. Phys. Lett., 2005, 22(5): 077101
[11] GU Bo, LOU Ji-Zhong, QIN Shao-Jing, XIANG Tao,. Exciton Excitations in a One-Dimensional Band Insulator with Hubbard Interactions[J]. Chin. Phys. Lett., 2004, 21(3): 077101
Viewed
Full text


Abstract