CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model |
Chang Wang1,2,3, Wenwu Pan2,3, Konstantin Kolokolov4, Shumin Wang1,2,5** |
1Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 3University of Chinese Academy of Sciences, Beijing 100190 4Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia 5Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 41296, Sweden
|
|
Cite this article: |
Chang Wang, Wenwu Pan, Konstantin Kolokolov et al 2018 Chin. Phys. Lett. 35 057801 |
|
|
Abstract Optical gains of type-II InGaAs/GaAsBi quantum wells (QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-consistent $k\cdot p$ Hamiltonian, taking into account valence band mixing and the strain effect. Our calculations show that the M-shaped type-II QWs are a promising structure for making 1.3 μm lasers at room temperature because they can easily be used to obtain 1.3 μm for photoluminescence with a proper thickness and have large wave-function overlap for high optical gain.
|
|
Received: 04 January 2018
Published: 30 April 2018
|
|
PACS: |
78.67.De
|
(Quantum wells)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
68.65.Fg
|
(Quantum wells)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492. |
|
|
[1] | Tixier S, Adamcyk M, Tiedje T, Francoeur S, Mascarenhas A, Wei P and Schiettekatte F 2003 Appl. Phys. Lett. 82 2245 | [2] | Francoeur S, Seong M J, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874 | [3] | Yoshida J, Kita T, Wada O and Oe K 2003 Jpn. J. Appl. Phys. Part. I Regul. Pap. Short Notes Rev. Pap. 42 371 | [4] | Yoshimoto M, Murata S, Chayahara A, Horino Y, Saraie J and Oe K 2003 Jpn. J. Appl. Phys. Part. I$\!I$ 42 L1235 | [5] | Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young E C and Tiedje T 2006 Phys. Rev. Lett. 97 67205 | [6] | Broderick C A, Usman M, Sweeney S J and O'Reilly E P 2012 Semicond. Sci. Technol. 27 94011 | [7] | Krotkus A 2014 Electron. Lett. 50 1155 | [8] | Wu X, Pan W, Zhang Z, Li Y, Cao C, Liu J, Zhang L, Song Y, Ou H and Wang S 2017 ACS Photon. 4 1322 | [9] | Bahrami-Yekta V, Tiedje T and Masnadi-Shirazi M 2015 Semicond. Sci. Technol. 30 094007 | [10] | Bennarndt W, Boehm G and Amann M C 2016 J. Cryst. Growth 436 56 | [11] | Pan W, Zhang L, Zhu L, Li Y, Chen X, Wu X, Zhang F, Shao J and Wang S 2016 J. Appl. Phys. 120 105702 | [12] | Pan W, Zhang L, Zhu L, Song Y, Li Y, Wang C, Wang P, Wu X, Zhang F, Shao J and Wang S 2017 Semicond. Sci. Technol. 32 15007 | [13] | Chen Y L, Gao Y, Chen H, Zhang H, He M, Li S T and Zheng S W 2016 Chin. Phys. Lett. 33 098101 | [14] | Luttinger J M and Kohn W 1955 Phys. Rev. 97 869 | [15] | Pikus G L and Bir G E 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: Wiley) | [16] | http://www.optronicsdesign.com/ | [17] | Kudrawiec R, Kopaczek J, Polak M P, Scharoch P, Gladysiewicz M, Misiewicz J, Richards R D, Bastiman F and David J P R 2014 J. Appl. Phys. 116 233508 | [18] | Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 | [19] | Zubkov V I, Melnik M A, Solomonov A V, Tsvelev E O, Bugge F, Weyers M and Trankle G 2004 Phys. Rev. B 70 075312 | [20] | Reithmaier J P, Hoger R, Riechert H, Heberle A, Abstreiter G and Weimann G 1990 Appl. Phys. Lett. 56 536 | [21] | Sharma T K, Jangir R, Porwal S, Kumar R, Ganguli T, Zorn M, Zeimer U, Bugge F, Weyers M and Oak S M 2009 Phys. Rev. B 80 165403 | [22] | Chang C S and Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218 | [23] | Willardson R K and Beer A C 1966 Semiconductors and Semimetals (US: California Academic Press Incorporated) vol 2 | [24] | Janotti A, Wei S H and Zhang S B 2002 Phys. Rev. B 65 115203 | [25] | Aumer M E et al 2001 Appl. Phys. Lett. 79 3803 | [26] | Zhao H, Arif R A and Tansu N 2008 J. Appl. Phys. 104 43104 | [27] | Yue L, Song Y X, Chen X R, Chen Q M, Pan W W, Wu X Y, Liu J J, Zhang L Y, Shao J and Wang S M 2017 J. Alloys Compd. 695 753 | [28] | Gu Y, Zhang Y G, Song Y X, Ye H, Cao Y Y, Li A Z, Wang S M 2013 Chin. Phys. B 22 037802 | [29] | Blood P 2015 Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors (UK: Oxford University Press) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|