Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 057801    DOI: 10.1088/0256-307X/35/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model
Chang Wang1,2,3, Wenwu Pan2,3, Konstantin Kolokolov4, Shumin Wang1,2,5**
1Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050
2School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210
3University of Chinese Academy of Sciences, Beijing 100190
4Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
5Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 41296, Sweden
Cite this article:   
Chang Wang, Wenwu Pan, Konstantin Kolokolov et al  2018 Chin. Phys. Lett. 35 057801
Download: PDF(601KB)   PDF(mobile)(595KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Optical gains of type-II InGaAs/GaAsBi quantum wells (QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-consistent $k\cdot p$ Hamiltonian, taking into account valence band mixing and the strain effect. Our calculations show that the M-shaped type-II QWs are a promising structure for making 1.3 μm lasers at room temperature because they can easily be used to obtain 1.3 μm for photoluminescence with a proper thickness and have large wave-function overlap for high optical gain.
Received: 04 January 2018      Published: 30 April 2018
PACS:  78.67.De (Quantum wells)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  68.65.Fg (Quantum wells)  
  81.05.Ea (III-V semiconductors)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/5/057801       OR      https://cpl.iphy.ac.cn/Y2018/V35/I5/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chang Wang
Wenwu Pan
Konstantin Kolokolov
Shumin Wang
[1]Tixier S, Adamcyk M, Tiedje T, Francoeur S, Mascarenhas A, Wei P and Schiettekatte F 2003 Appl. Phys. Lett. 82 2245
[2]Francoeur S, Seong M J, Mascarenhas A, Tixier S, Adamcyk M and Tiedje T 2003 Appl. Phys. Lett. 82 3874
[3]Yoshida J, Kita T, Wada O and Oe K 2003 Jpn. J. Appl. Phys. Part. I Regul. Pap. Short Notes Rev. Pap. 42 371
[4]Yoshimoto M, Murata S, Chayahara A, Horino Y, Saraie J and Oe K 2003 Jpn. J. Appl. Phys. Part. I$\!I$ 42 L1235
[5]Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young E C and Tiedje T 2006 Phys. Rev. Lett. 97 67205
[6]Broderick C A, Usman M, Sweeney S J and O'Reilly E P 2012 Semicond. Sci. Technol. 27 94011
[7]Krotkus A 2014 Electron. Lett. 50 1155
[8]Wu X, Pan W, Zhang Z, Li Y, Cao C, Liu J, Zhang L, Song Y, Ou H and Wang S 2017 ACS Photon. 4 1322
[9]Bahrami-Yekta V, Tiedje T and Masnadi-Shirazi M 2015 Semicond. Sci. Technol. 30 094007
[10]Bennarndt W, Boehm G and Amann M C 2016 J. Cryst. Growth 436 56
[11]Pan W, Zhang L, Zhu L, Li Y, Chen X, Wu X, Zhang F, Shao J and Wang S 2016 J. Appl. Phys. 120 105702
[12]Pan W, Zhang L, Zhu L, Song Y, Li Y, Wang C, Wang P, Wu X, Zhang F, Shao J and Wang S 2017 Semicond. Sci. Technol. 32 15007
[13]Chen Y L, Gao Y, Chen H, Zhang H, He M, Li S T and Zheng S W 2016 Chin. Phys. Lett. 33 098101
[14]Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[15]Pikus G L and Bir G E 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: Wiley)
[16]http://www.optronicsdesign.com/
[17]Kudrawiec R, Kopaczek J, Polak M P, Scharoch P, Gladysiewicz M, Misiewicz J, Richards R D, Bastiman F and David J P R 2014 J. Appl. Phys. 116 233508
[18]Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[19]Zubkov V I, Melnik M A, Solomonov A V, Tsvelev E O, Bugge F, Weyers M and Trankle G 2004 Phys. Rev. B 70 075312
[20]Reithmaier J P, Hoger R, Riechert H, Heberle A, Abstreiter G and Weimann G 1990 Appl. Phys. Lett. 56 536
[21]Sharma T K, Jangir R, Porwal S, Kumar R, Ganguli T, Zorn M, Zeimer U, Bugge F, Weyers M and Oak S M 2009 Phys. Rev. B 80 165403
[22]Chang C S and Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218
[23]Willardson R K and Beer A C 1966 Semiconductors and Semimetals (US: California Academic Press Incorporated) vol 2
[24]Janotti A, Wei S H and Zhang S B 2002 Phys. Rev. B 65 115203
[25]Aumer M E et al 2001 Appl. Phys. Lett. 79 3803
[26]Zhao H, Arif R A and Tansu N 2008 J. Appl. Phys. 104 43104
[27]Yue L, Song Y X, Chen X R, Chen Q M, Pan W W, Wu X Y, Liu J J, Zhang L Y, Shao J and Wang S M 2017 J. Alloys Compd. 695 753
[28]Gu Y, Zhang Y G, Song Y X, Ye H, Cao Y Y, Li A Z, Wang S M 2013 Chin. Phys. B 22 037802
[29]Blood P 2015 Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors (UK: Oxford University Press)
Related articles from Frontiers Journals
[1] Xiaorui Wang and Shijie Xu. Analytic S-Shaped Temperature Dependence of Peak Positions of the Localized-State Ensemble Luminescence and Application in the Analysis of Luminescence in Non- and Semi-Polar InGaN/GaN Quantum-Wells Micro-Array[J]. Chin. Phys. Lett., 2022, 39(10): 057801
[2] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 057801
[3] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 057801
[4] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 057801
[5] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 057801
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 057801
[7] Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang. Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(10): 057801
[8] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 057801
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 057801
[10] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 057801
[11] WANG Hai-Jiao, LI Yu-Dong, GUO Qi, MA Li-Ya, WEN Lin, WANG Bo. Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(5): 057801
[12] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 057801
[13] XING Jun-Liang, ZHANG Yu, LIAO Yong-Ping, WANG Juan, XIANG Wei, XU Ying-Qiang, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density[J]. Chin. Phys. Lett., 2014, 31(05): 057801
[14] ZHANG Xiao-Fu, LI Yu-Dong, GUO Qi, LU Wu . Low-Dose 1 MeV Electron Irradiation-Induced Enhancement in the Photoluminescence Emission of Ga-Rich InGaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2013, 30(7): 057801
[15] LI Zhi-Dong, XIAO Hong-Ling, WANG Xiao-Liang, WANG Cui-Mei, DENG Qing-Wen JING Liang, DING Jie-Qin, WANG Zhan-Guo, HOU Xun . The Growth and Fabrication of InGaN/GaN Multi-Quantum Well Solar Cells on Si(111) Substrates[J]. Chin. Phys. Lett., 2013, 30(6): 057801
Viewed
Full text


Abstract