Chin. Phys. Lett.  2018, Vol. 35 Issue (4): 047102    DOI: 10.1088/0256-307X/35/4/047102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Energetics of He and H Atoms in W–Ta Alloys: First-Principle Calculations
Chu-Bin Wan**, Su-Ye Yu, Xin Ju**
Department of Physics, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
Chu-Bin Wan, Su-Ye Yu, Xin Ju 2018 Chin. Phys. Lett. 35 047102
Download: PDF(892KB)   PDF(mobile)(886KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Properties of various defects of He and H atoms in W–Ta alloys are investigated based on density functional theory. The tetrahedral interstitial site is the most configured site for self-interstitial He and H in W and W–Ta alloys. Only a single He atom favors a substitutional site in the presence of a nearby vacancy. However, in the coexistence of He and H atoms in the presence of the vacancy, the single H atom favors the tetrahedral interstitial site (TIS) closest to the vacancy, and the He atom takes the vacancy center. The addition of Ta can reduce the formation energy of TIS He or H defects. The substituted Ta affects the charge density distribution in the vicinity of the He atom and decreases the valence electron density of the H atoms. A strong hybridization of the H $s$ states and the nearest W $d$ state s exists in W$_{53}$He$_{1}$H$_{1}$ structure. The sequence of the He $p$ projected DOS at the Fermi energy level is in agreement with the order of the formation energy of the He–H pair in the systems.
Received: 18 January 2018      Published: 13 March 2018
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.82.Bg (Metals and alloys)  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  61.80.Lj (Atom and molecule irradiation effects)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11605007, and the Funding from the China Scholarship Council under Grant No 201506465019.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/4/047102       OR      https://cpl.iphy.ac.cn/Y2018/V35/I4/047102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chu-Bin Wan
Su-Ye Yu
Xin Ju
[1]Samaras M 2009 Mater. Today 12 46
[2]Jiang B et al 2010 Phys. Rev. B 81 134112
[3]Zayachuk Y et al 2015 J. Nucl. Mater. 464 69
[4]Zayachuk Y et al 2013 Nucl. Fusion 53 013013
[5]Zayachuk Y et al 2012 Nucl. Fusion 52 103021
[6]Schmid K et al 2012 J. Nucl. Mater. 426 247
[7]Fernandez N et al 2015 Acta Mater. 94 307
[8]Kong X S et al 2015 Acta Mater. 84 426
[9]Becquart C S and Domain C 2006 Phys. Rev. Lett. 97 196402
[10]Wan C, Yu S and Ju X 2018 J. Nucl. Mater. 499 539
[11]Lee S C et al 2009 J. Nucl. Mater. 383 244
[12]Yin W et al 2016 J. Nucl. Mater. 480 202
[13]Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[14]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[15]Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[16]Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[17]Blöchl P E 1994 Phys. Rev. B 50 17953
[18]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19]Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20]You Y W et al 2014 J. Nucl. Mater. 450 64
[21]Zhou H B et al 2010 Nucl. Fusion 50 115010
[22]You Y W et al 2013 J. Nucl. Mater. 433 167
[23]Seletskaia T et al 2008 Phys. Rev. B 78 134103
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 047102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 047102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 047102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 047102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 047102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 047102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 047102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 047102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 047102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 047102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 047102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 047102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 047102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 047102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 047102
Viewed
Full text


Abstract