FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency |
Yin-Xing Ding1,2, Lu-Lu Wang1,2, Li Yu1,2** |
1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 2School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
Yin-Xing Ding, Lu-Lu Wang, Li Yu 2018 Chin. Phys. Lett. 35 014201 |
|
|
Abstract A Babinet-inverted optical nanoantenna analogue of electromagnetically induced transparency based on the coupling between two magnetic dipole antennas and a magnetic octupole antenna in a Au film waveguide is demonstrated. Simulation results indicate that a pronounced elimination occurs in the radiating spectrum due to the coupling-induced radiation suppression. A two-oscillator electromagnetically induced transparency model is used to describe the antenna. The coupling coefficient between the magnetic dipole antennas and the magnetic octupole antenna is calculated using the model and is found to decline exponentially with the increase of the distance between them. Such an antenna can be directly integrated with optical waveguides or transmission lines, thus is of fundamental significance for the applications in nano-optics, such as the optical device miniaturizations and photonic circuit integrations.
|
|
Received: 01 September 2017
Published: 17 December 2017
|
|
PACS: |
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.82.Gw
|
(Other integrated-optical elements and systems)
|
|
42.82.-m
|
(Integrated optics)
|
|
|
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301300, the National Natural Science Foundation of China under Grant Nos 11374041, 11574035 and 11404030, and the State Key Laboratory of Information Photonics and Optical Communications. |
|
|
[1] | Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 | [2] | Boller J K, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66 2593 | [3] | Wu Y and Yang X 2005 Phys. Rev. A 71 053806 | [4] | Lal S, Link S and Halas N J 2007 Nat. Photon. 1 641 | [5] | Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758 | [6] | Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C and Giessen H 2010 Nano Lett. 10 1103 | [7] | Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401 | [8] | Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2009 Nano Lett. 9 1663 | [9] | Zhu Y, Hu X, Fu Y, Yang H and Gong Q 2013 Sci. Rep. 3 2338 | [10] | Dong C, Li B, Li H X, Liu H, Chen M Q, Li D D, Yan C C and Zhang D H 2016 Chin. Phys. Lett. 33 074201 | [11] | Habteyes T G, Dhuey S, Cabrini S, Schuck P J and Leone S R 2011 Nano Lett. 11 1819 | [12] | Kosako T, Kadoya Y and Hofmann H F 2010 Nat. Photon. 4 312 | [13] | Novotny L and Hulst N V 2011 Nat. Photon. 5 83 | [14] | Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402 | [15] | Olmon R L and Raschke M B 2012 Nanotechnology 23 444001 | [16] | Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W and Kuipers L 2010 Rev. Mod. Phys. 82 729 | [17] | Dorfmuller J, Dregely D, Esslinger M, Khunsin W, Vogelgesang R, Kern K and Giessen H 2011 Nano Lett. 11 2819 | [18] | Dregely D, Taubert R, Dorfmuller J, Vogelgesang R, Kern K and Giessen H 2011 Nat. Commun. 2 267 | [19] | Taminiau T H, Moerland R J, Segerink F B, Kuipers L and van Hulst N F 2007 Nano Lett. 7 28 | [20] | Kinkhabwala A A, Yu Z, Fan S, Avlasevich Y, Mullen K and Moerner W E 2009 Nat. Photon. 3 654 | [21] | Farahani J N, Pohl D W, Eisler J H and Hecht B 2005 Phys. Rev. Lett. 95 017402 | [22] | Kühn S, Håkanson U, Rogobete L and Sandoghdar V 2006 Phys. Rev. Lett. 97 017402 | [23] | Muskens O L, Giannini V, Sánchez-Gil J A and Rivas J G 2007 Nano Lett. 7 2871 | [24] | Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R and van Hulst N F 2010 Science 329 930 | [25] | Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402 | [26] | Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kürzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett. 100 203002 | [27] | Yang J, Xiao X, Hu C, Zhang W, Zhou S and Zhang J 2014 Nano Lett. 14 704 | [28] | Zhang J, Zhang W, Zhu X, Yang J, Xu J and Yu D 2012 Appl. Phys. Lett. 100 241115 | [29] | Kim J, Roh Y G, Cheon S, Choe J H, Lee J, Lee J, Jeong H, Kim U J, Park Y, Song I Y, Park Q H, Hwang S W, Kim K and Lee C W 2014 Nano Lett. 14 3072 | [30] | Kim J, Roh Y G, Cheon S, Kim U J, Hwang S W, Park Y and Lee C W 2015 Sci. Rep. 5 11832 | [31] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 | [32] | Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W and Ward C A 1983 Appl. Opt. 22 1099 | [33] | Li Q, Wang T, Su Y, Yan M and Qiu M 2010 Opt. Express 18 8367 | [34] | Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S and Lipson M 2006 Phys. Rev. Lett. 96 123901 | [35] | Xiao Y F, Li M, Liu Y C, Li Y, Sun X and Gong Q 2010 Phys. Rev. A 82 065804 | [36] | Xiao Y F, Gaddam V and Yang L 2008 Opt. Express 16 12538 | [37] | Li J, Yu R, Ding C and Wu Y 2016 Phys. Rev. A 93 023814 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|