CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Mobility P-Type MOSFETs with Integrated Strained-Si$_{0.73}$Ge$_{0.27}$ Channels and High-$\kappa$/Metal Gates |
Shu-Juan Mao1, Zheng-Yong Zhu2**, Gui-Lei Wang1, Hui-Long Zhu1, Jun-Feng Li1, Chao Zhao1 |
1Integrated Circuit Advanced Process Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
Shu-Juan Mao, Zheng-Yong Zhu, Gui-Lei Wang et al 2016 Chin. Phys. Lett. 33 118502 |
|
|
Abstract Strained-Si$_{0.73}$Ge$_{0.27}$ channels are successfully integrated with high-$\kappa $/metal gates in p-type metal-oxide- semiconductor field effect transistors (pMOSFETs) using the replacement post-gate process. A silicon cap and oxide inter layers are inserted between Si$_{0.73}$Ge$_{0.27}$ and high-$\kappa$ dielectric to improve the interface. The fabricated Si$_{0.73}$Ge$_{0.27}$ pMOSFETs with gate length of 30 nm exhibit good performance with high drive current ($\sim$428 $\mu$A/μm at $V_{\rm DD}=1$ V) and suppressed short-channel effects (DIBL$\sim $77 mV/V and SS$\sim$90 mV/decade). It is found that the enhancement of effective hole mobility is up to 200% in long-gate-length Si$_{0.73}$Ge$_{0.27}$-channel pMOSFETs compared with the corresponding silicon transistors. The improvement of device performance is reduced due to strain relaxation as the gate length decreases, while 26% increase of the drive current is still obtained for 30-nm-gate-length Si$_{0.73}$Ge$_{0.27}$ devices.
|
|
Received: 22 August 2016
Published: 28 November 2016
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
Fund: Supported by the National Basic Research Program of China under Grant No 2011CBA00605, and the National Natural Science Foundation of China under Grant No 61404165. |
|
|
[1] | Lander R J P, Ponomarev Y V, Berkum J G M and Boer W B 2001 IEEE Trans. Electron Devices 48 1826 | [2] | Tezuka T, Nakaharai S, Moriyama Y, Sugiyama N and Takagi S 2005 IEEE Electron Device Lett. 26 243 | [3] | Fiorenza J G, Park J S and Lochtefeld A 2008 IEEE Trans. Electron Devices 55 640 | [4] | Schmidt M, Sch?fer A, Minamisawa R A, Buca D, Trellenkamp S, Hartmann J M, Zhao Q T and Mantl S 2014 IEEE Electron Device Lett. 35 699 | [5] | Hinckley J M and Singh J 1990 Phys. Rev. B 42 3546 | [6] | Laikhtman B and Kiehl R A 1993 Phys. Rev. B 47 10515 | [7] | Fischetti M and Laux S 1996 J. Appl. Phys. 80 2234 | [8] | Migita S, Morita Y, Mizubayashi W and Ota H 2010 IEDM Tech. Dig. p 269 | [9] | Hook T B, Johnson J B, Han J P, Pond A, Shimizu T and Tsutsui G 2010 IEEE Trans. Electron Devices 57 2440 | [10] | Lee J C, Cho H J, Kang C S, Rhee S J, Kim Y H, Choi R, Kang C Y, Choi C H and Abkar M 2003 IEDM Tech. Dig. p 95 | [11] | Ragnarsson L A, Pantisano L, Kaushik V, Saito S I, Shimamoto Y, Gendt S D and Heyns M 2003 IEDM Tech. Dig. p 87 | [12] | Morioka A, Watanabe H, Miyamura M, Tatsumi T, Saitoh M, Ogura T, Iwamoto T, Ikarashi T, Saito Y, Okada Y, Watanabe H, Mochiduki Y and Mogami T 2003 VLSI Tech. Dig. p 165 | [13] | Miyazaki S 2001 J. Vac. Sci. Technol. B 19 2212 | [14] | Wang Y R, Yang H, Xu H, Wang X L, Luo W C, Qi L W, Zhang S X, Wang W W, Yan J, Zhu H L, Zhao C, Chen D P and Ye T C 2015 Chin. Phys. B 24 117306 | [15] | Chau R, Datta S, Doczy M, Doyle B, Kavalieros J and Metz M 2004 IEEE Electron Device Lett. 25 408 | [16] | Singh N, Fang W W, Rustagi S C, Budharaju K D, Teo S H G, Mohanraj S, Lo G Q, Balasubramanian N and Kwong D L 2007 IEEE Electron Device Lett. 28 558 | [17] | Chléirigh C N, Theodore N D, Fukuyama H, Mure S, Ehrke H U, Domenicucci A and Hoyt J L 2008 IEEE Trans. Electron Devices 55 2687 | [18] | Shi Z, Onsongo D, Rai R, Samavedam S B and Banerjee S K 2004 Solid-State Electron. 48 2299 | [19] | Barraud S, Hartmann J M, Virginie M A, Tosti L, Delaye V and Lafond D 2014 IEEE Trans. Electron Devices 61 953 | [20] | Weber O, Damlencourt J F, Andrieu F, Ducroquet F, Ernst T, Hartmann J M, Papon A M, Renault O, Guillaumot B and Deleonibus S 2006 IEEE Trans. Electron Devices 53 449 | [21] | Cassé M, Hutin L, Royer C L, Cooper D, Hartmann J M and Reimbold G 2012 IEEE Trans. Electron Devices 59 316 | [22] | Deshpande V, Djara V, O'Connor E, Hashemi P, Balakrishnan K, Sousa M, Caimi D, Olziersky A, Czornomaz L and Fompeyrine J 2015 IEDM Tech. Dig. p 209 | [23] | Eneman G, Yamaguchi S, Ortolland C, Takeoka S, Witters L, Chiarella T, Favia P, Hikavyy A, Mitard J, Kobayashi M, Krom R, Bender H, Tseng J, Wang W E, Vandervorst W, Loo R, Absil P, Biesemans S and Hoffmann T 2010 VLSI Tech. Dig. p 41 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|