Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 110502    DOI: 10.1088/0256-307X/32/11/110502
GENERAL |
Target Inactivation and Recovery in Two-Layer Networks
SONG Xin-Fang1,2**, WANG Wen-Yuan2
1School of Physics, Beijing Institute of Technology, Beijing 100081
2School of Graduate, China Academy of Engineering Physics, Beijing 100088
Cite this article:   
SONG Xin-Fang, WANG Wen-Yuan 2015 Chin. Phys. Lett. 32 110502
Download: PDF(843KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the target inactivation and recovery in two-layer networks. Five kinds of strategies are chosen to attack the two-layer networks and to recover the activity of the networks by increasing the inter-layer coupling strength. The results show that we can easily control the dying state effectively by a randomly attacked situation. We then investigate the recovery activity of the networks by increasing the inter-layer coupled strength. The optimal values of the inter-layer coupled strengths are found, which could provide a more effective range to recovery activity of complex networks. As the multilayer systems composed of active and inactive elements raise important and interesting problems, our results on the target inactivation and recovery in two-layer networks would be extended to different studies.
Received: 01 July 2015      Published: 01 December 2015
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/110502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/110502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Xin-Fang
WANG Wen-Yuan
[1] Erd?s P and Rényi A 1959 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[2] Barabási A L and Albert R 1999 Science 286 509
[3] Barabási A L et al 1999 Physica A 272 173
[4] Strogatz S H 2001 Nature 410 268
[5] Zhan M et al 2001 Phys. Rev. Lett. 86 1510
[6] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[7] Wang X F 2002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 885
[8] Wang X G et al 2004 Phys. Rev. Lett. 92 074102
[9] Daido H and Nakanishi K 2004 Phys. Rev. Lett. 93 104101
[10] Pazó D and Montbrió E 2006 Phys. Rev. E 73 055202(R)
[11] Daido H and Nakanishi K 2007 Phys. Rev. E 75 056206
[12] Daido H 2008 Europhys. Lett. 84 10002
[13] Kryukov A K et al 2008 Chaos 18 037129
[14] Zou W and Zhan M 2009 Phys. Rev. E 80 065204(R)
[15] Daido H 2009 Europhys. Lett. 87 40001
[16] Wang G et al 2010 Phys. Rev. E 82 045201(R)
[17] Tanaka G et al 2010 Phys. Rev. E 82 035202(R)
[18] Zou W et al 2011 Chaos 21 023130
[19] Daido H 2011 Phys. Rev. E 83 026209
[20] Morino K et al 2011 Phys. Rev. E 83 056208
[21] Tanaka G et al 2012 Sci. Rep. 2 232
[22] He Z W et al 2013 Physica A 392 4181
[23] Zou W et al 2013 Phys. Rev. Lett. 111 014101
[24] Morino K et al 2013 Phys. Rev. E 88 032909
[25] Zou W et al 2015 Nat. Commun. 6 7709
[26] Zou W et al 2013 Phys. Rev. E 88 050901(R)
[27] Wang L et al 2014 Chin. Phys. Lett. 31 070501
[28] Feng Y E et al 2014 Chin. Phys. Lett. 31 080503
[29] Zou Y Y and Li H H 2014 Chin. Phys. Lett. 31 100501
[30] Yang Y J et al 2015 Chin. Phys. Lett. 32 010502
Related articles from Frontiers Journals
[1] Liang Zhang, Tian Tian, Pu Huang, Shaochun Lin, Jiangfeng Du. Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice[J]. Chin. Phys. Lett., 2020, 37(1): 110502
[2] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 110502
[3] Nian-Ping Wu, Hong-Yan Cheng, Qiong-Lin Dai, Hai-Hong Li. The Ott–Antonsen Ansatz in Globally Coupled Phase Oscillators[J]. Chin. Phys. Lett., 2016, 33(07): 110502
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 110502
[5] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 110502
[6] ZHANG Ji-Qian, HUANG Shou-Fang, PANG Si-Tao, WANG Mao-Sheng, GAO Sheng. Synchronization in the Uncoupled Neuron System[J]. Chin. Phys. Lett., 2015, 32(12): 110502
[7] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 110502
[8] LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua. Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks[J]. Chin. Phys. Lett., 2015, 32(11): 110502
[9] FENG Yue-E, LI Hai-Hong. The Dependence of Chimera States on Initial Conditions[J]. Chin. Phys. Lett., 2015, 32(06): 110502
[10] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 110502
[11] JU Ping, YANG Jun-Zhong. Synchronization Dynamics in a System of Multiple Interacting Populations of Phase Oscillators[J]. Chin. Phys. Lett., 2015, 32(03): 110502
[12] YANG Yan-Jin, DU Ru-Hai, WANG Sheng-Jun, JIN Tao, QU Shi-Xian. Change of State of a Dynamical Unit in the Transition of Coherence[J]. Chin. Phys. Lett., 2015, 32(01): 110502
[13] G. Sivaganesh. An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits[J]. Chin. Phys. Lett., 2015, 32(01): 110502
[14] ZOU Ying-Ying, LI Hai-Hong. Paths to Synchronization on Complex Networks with External Drive[J]. Chin. Phys. Lett., 2014, 31(10): 110502
[15] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 110502
Viewed
Full text


Abstract