GENERAL |
|
|
|
|
Analytical Results for Frequency-Weighted Kuramoto-Oscillator Networks |
LIU Yu-Long**, YU Xiao-Ming, HAO Yu-Hua |
School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng 224051
|
|
Cite this article: |
LIU Yu-Long, YU Xiao-Ming, HAO Yu-Hua 2015 Chin. Phys. Lett. 32 110503 |
|
|
Abstract The Kuramoto model for an ensemble of coupled oscillators provides a paradigmatic example of non-equilibrium transitions between an incoherent and a synchronized state. A frequency-weighted network of Kuramoto oscillators is proposed, where the oscillators are asymmetrically coupled with the weights depending on their own native frequencies. Moreover, the characteristics of the whole network can be described by a single weighting exponent β. To obtain some analytical results, we focus on three special values of the weighting exponent β. Obviously, the network of oscillators in connection with the heterogeneous coupling scheme turns out to exhibit richer dynamics. Our findings indicate that the weighting exponents should be of importance to affect the network's synchronization ability.
|
|
Received: 29 July 2015
Published: 01 December 2015
|
|
PACS: |
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
|
|
|
[1] Crawford J D 1995 Phys. Rev. Lett. 74 4341 [2] Watts D J and Strogatz S H 1998 Nature 393 440 [3] Ojalvo J G, Elowitz M B and Strogatz S H 2004 Proc. Natl. Acad. Sci. USA 101 10955 [4] Arenas A, Diaz-Guilera A, Kurths J and Zhou C S 2008 Phys. Rep. 469 93 [5] Li X 2008 Physica A 387 6624 [6] Abrams D M, Mirollo R, Strogatz S H and Wiley D A 2008 Phys. Rev. Lett. 101 084103 [7] Chavanis P H 2008 Eur. Phys. J. B 62 179 [8] Abrams D M and Strogatz S H 2006 Int. J. Bifurcation Chaos Appl. Sci. Eng. 6 21 [9] Zhang L, Tang G, Xun Z, Han K and Chen H 2008 Eur. Phys. J. B 63 227 [10] Zou Y, Zhu J and Chen G 2006 Phys. Rev. E 74 046107 [11] Acebron J A, Bonilla L L, Perez-Vicente J P, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137 [12] Brede M 2008 Eur. Phys. J. B 62 87 [13] Donner R 2008 Eur. Phys. J. B 63 349 [14] Ullner E, Koseska A, Kurths J, Volkov E, Kantz H and Garcia-Ojalvo J 2008 Phys. Rev. E 78 031904 [15] Prignano L and Guilera A D 2012 Phys. Rev. E 85 036112 [16] Zemanova L, Zhou C S and Kurths J 2006 Physica D 224 202 [17] Mori F 2010 Phys. Rev. Lett. 104 108701 [18] Ravoori B, Cohen A B, Sun J, Motter A E, Murphy T E and Roy R 2011 Phys. Rev. Lett. 107 03410 [19] Mather W, Bennett M R, Hasty J and Tsimring L S 2009 Phys. Rev. Lett. 102 068105 [20] Wang W X and Chen G 2008 Phys. Rev. E 77 026101 [21] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Berlin: Springer-Verlag) [22] Albert R and Barabasi A L2002 Rev. Mod. Phys. 74 47 [23] Strogatz S H 2000 Physica D 143 1 [24] Wu Y, Xiao J H, Hu G and Zhan M 2012 Europhys. Lett. 97 40005 [25] Wang H Q and Li X 2011 Phys. Rev. E 83 066214 [26] Sun X J and Lu Q S 2009 Chin. Phys. Lett. 26 060507 [27] Li L, Guan J H and Zhou S G 2015 Chin. Phys. Lett. 32 030501 [28] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117 [29] Wang J L, Liu F A and Zhu Z F 2015 Acta Phys. Sin. 64 050501 (in Chinese) [30] Marodi M, Ovidio F and Vicsek T 2002 Phys. Rev. E 66 011109 [31] Ren Q S and Zhao J Y 2007 Phys. Rev. E 76 016207 [32] Zhang X Y, Boccaletti S, Guan S G and Liu Z H 2015 Phys. Rev. Lett. 114 038701 [33] Leyva I, Sendina-Nadal I, Almendral J A, Navas A, Olmi S and Boccaletti S 2013 Phys. Rev. E 88 042808 [34] Rogers J L and Wille L T 1996 Phys. Rev. E 54 R2193 [35] Yang Y B and Wang W G 2015 Chin. Phys. Lett. 32 030301 [36] Hong H, Park H and Choi M Y 2004 Phys. Rev. E 70 045204 [37] Dorfler F and Bullo F 2010 Proc. Amn. Control Conf. IEEE Baltimore 27 930 [38] Hu X, Boccaletti S, Huang W W, Zhang X Y, Liu Z H, Guan S G and Lai C H 2014 Sci. Rep. 4 7262 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|