NUCLEAR PHYSICS |
|
|
|
|
Azimuthal Asymmetry of Pion-Meson Emission around the Projectile and Target Sides in Au+Au Collision at 1A GeV |
WANG Ting-Ting1,2, LU Ming1,2, MA Yu-Gang1**, FANG De-Qing1, WANG Shan-Shan1,3, ZHANG Guo-Qiang1 |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
3Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007 |
|
Cite this article: |
WANG Ting-Ting, LU Ming, MA Yu-Gang et al 2015 Chin. Phys. Lett. 32 062501 |
|
|
Abstract The ratio of the number of emitted pions from the target side to that from the projectile side at target rapidity within the reaction plane is investigated for the study of the pion dynamics with an isospin-dependent quantum molecular dynamic model. The results show that high-energy pions are emitted preferentially towards the target side and, therefore, they are freezed out at the early stage of the collision. By contrast, low-energy pions are emitted predominantly in the opposite direction, which means that they are emitted in a later stage. This argument is based on the shadowing effect caused by the interaction of pions with the spectator matter in peripheral collisions at target or projectile rapidities. This phenomenon disappears in the central collision or at midrapidity due to the weaker shadowing effect. The calculated ratios are also compared with the experimental data.
|
|
Received: 24 April 2015
Published: 30 June 2015
|
|
PACS: |
25.75.Dw
|
(Particle and resonance production)
|
|
25.75.Ld
|
(Collective flow)
|
|
24.10.Lx
|
(Monte Carlo simulations (including hadron and parton cascades and string breaking models))
|
|
|
|
|
[1] Stocker H, Greiner W, Scheid W et al 1978 Z. Phys. A 286 121
[2] Harris J, Bock R, Brockmann R, Sandoval A, Stock R and Stroebele H 1985 Phys. Lett. B 153 377
[3] Stocker H and Greiner W 1986 Phys. Rep. 137 277
[4] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[5] Danielewicz P 1979 Nucl. Phys. A 314 465
[6] Stocker H, Ogloblin A A et al 1981 Z. Phys. A 303 259
[7] Sandoval A, Stock R et al 1980 Phys. Rev. Lett. 45 874
[8] Stock R, Bock R et al 1982 Phys. Rev. Lett. 49 1236
[9] Gosset J, Valette O et al 1989 Phys. Rev. Lett. 62 1251
[10] Wagner A, Muntz C et al 2000 Phys. Rev. Lett. 85 18
[11] Aichelin J 1991 Phys. Rep. 202 233
[12] Hartnack C, Oeschler H, Leifels Y et al 2012 Phys. Rep. 510 119
[13] Kumar S and Ma Y G 2012 Phys. Rev. C 86 051601(R)
[14] Kumar S and Ma Y G 2013 Nucl. Sci. Tech. 24 050509
[15] Wang J, Ma Y G, Zhang G Q et al 2013 Nucl. Sci. Tech. 24 030501
[16] Wang J, Ma Y G et al 2014 Phys. Rev. C 90 054601
[17] Tao C, Ma Y G et al 2013 Nucl. Sci. Tech. 24 030501
[18] Tao C, Ma Y G et al 2013 Phys. Rev. C 88 064615
[19] Guo W J et al 2014 Chin. Phys. Lett. 31 102501
[20] Zhang Y X, Li Z X, Zhao K, Liu H and Tsang M B 2013 Nucl. Sci. Tech. 24 050503
[21] Feng Z Q 2013 Nucl. Sci. Tech. 24 050504
Feng Z Q 2015 Nucl. Sci. Tech. 26 S20512 [22] Zhou C L, Ma Y G, Fang D Q et al 2014 Nucl. Tech. 37 100516 (in Chinese)
[23] Zhou C L, Ma Y G, Fang D Q et al 2014 Phys. Rev. C 90 057601
[24] Lv M, Ma Y G, Zhang G Q et al 2014 Phys. Lett. B 733 105
[25] Lyu M, Ma Y G, Zhang G Q et al 2014 Nucl. Tech. 37 100517 (in Chinese)
[26] Li B A, Bauer W and Bertsch G F 1991 Phys. Rev. C 44 2095
[27] Bass S A, Mattiello R, Stocker H et al 1993 Phys. Lett. B 302 381
[28] Kintner J C, Albergo S, Bieser F et al 1997 Phys. Rev. Lett. 78 4165
[29] Bass S A, Hartnack C, Stocker H et al 1995 Phys. Rev. C 51 3343
[30] Li B A 1994 Nucl. Phys. A 570 797
[31] Feng Z Q and Jin G M 2010 Phys. Rev. C 82 044615
[32] Pelte D, Hafele E, Best D et al 1997 Z. Phys. A 357 215
[33] Danielewicz P 1995 Phys. Rev. C 51 716
[34] Zhou F C, Cai X and Zhou D C 2014 Chin. Phys. Lett. 31 072501 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|