Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 028502    DOI: 10.1088/0256-307X/32/2/028502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Pulse and dc Formation on the Performance of One-Transistor and One-Resistor Resistance Random Access Memory Devices
LIU Hong-Tao1,2, YANG Bao-He1**, LV Hang-Bing2**, XU Xiao-Xin2, LUO Qing2, WANG Guo-Ming1,2, ZHANG Mei-Yun2, LONG Shi-Bing2, LIU Qi2, LIU Ming2
1School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300072
2Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
LIU Hong-Tao, YANG Bao-He, LV Hang-Bing et al  2015 Chin. Phys. Lett. 32 028502
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (HRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher HRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.

Published: 20 January 2015
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Pq (Bipolar transistors)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/028502       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/028502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hong-Tao
YANG Bao-He
LV Hang-Bing
XU Xiao-Xin
LUO Qing
WANG Guo-Ming
ZHANG Mei-Yun
LONG Shi-Bing
LIU Qi
LIU Ming

[1] Yang J J et al 2008 Nat. Nanotechnol.ogy 3 429
[2] Chen G, Song C, Chen C, Gao S, Zeng F and Pan F 2012 Adv. Mater. 24 3515
[3] Sun Q Q, Wang L H, Yang W, Zhou P and Wang P F 2013 Sci. Rep. 3 2921
[4] Ninomiya T, Wei Z G, Muraoka S, Yasuhara R, Katayama K and Takagi T 2013 IEEE Trans. Electron Devices 60 1384
[5] Wu L C, Song Z T, Liu B, Rao F, Xu C, Zhang T, Yin W J and Feng S L 2007 Chin. Phys. Lett. 24 1103
[6] Xing Z W, Chen X, W U N J and Ignatiev A 2011 Chin. Phys. B 20 097703
[7] Gilmer D C, Bersuker G, Park H Y, Butcher B, Wang W, Kirsch P D and Jammy R 2011 IEEE IMW 12061836
[8] Paolo L, Rosario R and Fernanda I 2013 IEEE Trans. Electron Devices 60 438
[9] Chu T J, Chang T C, Tsai T M, Chen J H and Chang K C 2013 IEEE Electron Device Lett. 34 502
[10] Gao S, Song C, Chen C, Zeng F and Pan F 2012 J. Phys. Chem. C 116 17955
[11] Liu Q et al 2012 Adv. Mater. 24 1844
[12] Liu H T, Lv H B, Yang B H, Xu X X, Liu R Y, Liu Q Long S B and Liu M 2014 IEEE Electron Device Lett. 35 1224
[13] Wang M, Bi C, Li L, Long S B, Liu Q, Lv H B, Lu N D, Sun P X and Liu M 2014 Nat. Commun. 5 4598
[14] Zhang M Y et al 2014 Appl. Phys. Lett. 105 193501
[15] Deng N, Jia H Y, Wu W and Wu H Q 2014 Chin. Phys. Lett. 31 108504
[16] Lin J, Li D, Chen J S, Li J H and Ma D G 2007 Chin. Phys. Lett. 24 3280
[17] Jin D et al 2014 Chin. Phys. B 23 035201
[18] Wang J H, Wang X H, Pang L, Chen X J and Liu X Y 2012 Chin. Phys. Lett. 29 088502
[19] Wu Q Q et al 2013 Chin. Phys. Lett. 30 068502
[20] Lee J H et al 2013 Chin. Phys. Lett. 30 038502
[21] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901

Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 028502
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 028502
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 028502
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 028502
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 028502
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 028502
[7] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers[J]. Chin. Phys. Lett., 2020, 37(6): 028502
[8] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 028502
[9] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 028502
[10] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 028502
[11] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 028502
[12] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 028502
[13] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 028502
[14] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 028502
[15] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 028502
Viewed
Full text


Abstract