Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 127301    DOI: 10.1088/0256-307X/31/12/127301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field
Emine Ozturk1**, Ismail Sokmen2
1Department of Physics, Cumhuriyet University, Sivas 58140, Turkey
2Department of Physics, Dokuz Eylül University, Izmir 35160, Turkey
Cite this article:   
Emine Ozturk, Ismail Sokmen 2014 Chin. Phys. Lett. 31 127301
Download: PDF(488KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The intersubband optical absorption coefficients and the refractive index change depending on the intense laser field (ILF); both are calculated in a square quantum well (SQW) and a graded quantum well (GQW). Our results show that the position and the magnitude of the linear, nonlinear and total absorption coefficients and refractive index changes depend on the laser field parameter and the quantum well (QW) shape. By increasing the ILF value, we can obtain a red shift or a blue shift in the intersubband optical transitions as dependent on the shape of the QW. For the SQW, the intersubband absorption spectrum shows a blue shift up to the critical laser field value. This spectrum shows a red shift for ILF values larger than this certain value. For the GQW, the intersubband absorption spectrum shows a red shift by increasing the ILF. Thus the absorption coefficients and the refractive index changes, which can be suitable for great performance optical modulators and multiple infrared optical device applications, can be easily obtained by tuning the ILF value and the QW shape.
Published: 12 January 2015
PACS:  73.21.Fg (Quantum wells)  
  78.67.De (Quantum wells)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/127301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/127301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Emine Ozturk
Ismail Sokmen
[1] Leobandung E, Guo L and Chou S 1995 Appl. Phys. Lett. 67 2338
[2] Loss D and Divicenzo D P 1998 Phys. Rev. A 57 120
[3] Jiang X, Li S S and Tidrow M Z 1999 Physica E 5 27
[4] Yuen S Y 1983 Appl. Phys. Lett. 43 813
[5] Coon D D and Karunasiri R P G 1984 Appl. Phys. Lett. 45 649
[6] Levine B F, Bethea C G, Choi K K, Walker J and Malik R J 1988 Appl. Phys. Lett. 53 231
[7] Huang Y, Lien C and Tan Fu Lei 1993 J. Appl. Phys. 74 2598
[8] Pandey L N and George T F 1992 Appl. Phys. Lett. 61 1081
[9] Ben Jazia A, Mejri A, Maaref H and Souissi K 1997 Semicond. Sci. Technol. 12 1388
[10] West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156
[11] Turton R J and Jaros M 1989 Appl. Phys. Lett. 54 1986
[12] Capasso F, Mohammed K and Cho A Y 1986 Appl. Phys. Lett. 48 478
[13] Gossen K W and Lyon S A 1985 Appl. Phys. Lett. 47 289
[14] Choi K K, Levine B F, Bethea C G, Walker J and Malik R J 1987 Appl. Phys. Lett. 50 1814
[15] Ahn D and Chuang S L 1987 Phys. Rev. B 35 4149
[16] Karunasiri R P G, Mii Y J and Wang K L 1990 IEEE Electron Device Lett. 11 227
[17] Noda S, Uemura T, Yamashita T and Sasaki A 1990 J. Appl. Phys. 68 6529
[18] Faist J, Capasso F, Sivco D L, Sirtori C, HutchinsonA L and Cho A Y 1994 Science 264 553
[19] Ozturk E and Sokmen I 2012 Superlattices Microstruct. 52 1010
[20] Karabulut I, Atav U, Safak H and Tomak M 2007 Eur. Phys. J. B 55 283
[21] Chen B, Guo K X, Wang R Z, Zheng Y B and Li B 2008 Eur. Phys. J. B 66 227
[22] Ungan F, Restrepo R L, Mora-Ramos M E, Morales A L and Duque C A 2014 Physica B 434 26
[23] Eseanu N, Niculescu E C and Burileanu L M 2009 Physica E 41 1386
[24] Lima F M S, Amato M A, Nunes O A C, Fonseca A L A, Enders B G and da Silva Jr E F 2009 J. Appl. Phys. 105 123111
[25] Ozturk E, Sari H and Sokmen I 2004 Solid State Commun. 132 497
[26] Mora-Ramos M E, Duque C A, Kasapoglu E, Sari H and Sokmen I 2012 J. Lumin. 132 901
[27] Ozturk E and Sokmen I 2014 J. Lumin. 145 387
[28] Ozturk E 2014 Opt. Commun. 332 136
[29] Ahn D and Chuang S L 1987 IEEE J. Quantum Electron. 23 2196
Related articles from Frontiers Journals
[1] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 127301
[2] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 127301
[3] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 127301
[4] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 127301
[5] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 127301
[6] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 127301
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 127301
[8] Shaffa Almansour, Hassen Dakhlaoui, Emane Algrafy. Effect of Si $\delta$-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(02): 127301
[9] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 127301
[10] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 127301
[11] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 127301
[12] GAO Han-Chao, YIN Zhi-Jun. Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure[J]. Chin. Phys. Lett., 2015, 32(06): 127301
[13] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 127301
[14] WANG Gang, YE Hui-Qi, SHI Zhen-Wu, WANG Wen-Xin, MARIE Xavier, BALOCCHI Andrea, AMAND Thierry, LIU Bao-Li. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(9): 127301
[15] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 127301
Viewed
Full text


Abstract