CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field |
Emine Ozturk1**, Ismail Sokmen2 |
1Department of Physics, Cumhuriyet University, Sivas 58140, Turkey 2Department of Physics, Dokuz Eylül University, Izmir 35160, Turkey
|
|
Cite this article: |
Emine Ozturk, Ismail Sokmen 2014 Chin. Phys. Lett. 31 127301 |
|
|
Abstract The intersubband optical absorption coefficients and the refractive index change depending on the intense laser field (ILF); both are calculated in a square quantum well (SQW) and a graded quantum well (GQW). Our results show that the position and the magnitude of the linear, nonlinear and total absorption coefficients and refractive index changes depend on the laser field parameter and the quantum well (QW) shape. By increasing the ILF value, we can obtain a red shift or a blue shift in the intersubband optical transitions as dependent on the shape of the QW. For the SQW, the intersubband absorption spectrum shows a blue shift up to the critical laser field value. This spectrum shows a red shift for ILF values larger than this certain value. For the GQW, the intersubband absorption spectrum shows a red shift by increasing the ILF. Thus the absorption coefficients and the refractive index changes, which can be suitable for great performance optical modulators and multiple infrared optical device applications, can be easily obtained by tuning the ILF value and the QW shape.
|
|
Published: 12 January 2015
|
|
PACS: |
73.21.Fg
|
(Quantum wells)
|
|
78.67.De
|
(Quantum wells)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] Leobandung E, Guo L and Chou S 1995 Appl. Phys. Lett. 67 2338 [2] Loss D and Divicenzo D P 1998 Phys. Rev. A 57 120 [3] Jiang X, Li S S and Tidrow M Z 1999 Physica E 5 27 [4] Yuen S Y 1983 Appl. Phys. Lett. 43 813 [5] Coon D D and Karunasiri R P G 1984 Appl. Phys. Lett. 45 649 [6] Levine B F, Bethea C G, Choi K K, Walker J and Malik R J 1988 Appl. Phys. Lett. 53 231 [7] Huang Y, Lien C and Tan Fu Lei 1993 J. Appl. Phys. 74 2598 [8] Pandey L N and George T F 1992 Appl. Phys. Lett. 61 1081 [9] Ben Jazia A, Mejri A, Maaref H and Souissi K 1997 Semicond. Sci. Technol. 12 1388 [10] West L C and Eglash S J 1985 Appl. Phys. Lett. 46 1156 [11] Turton R J and Jaros M 1989 Appl. Phys. Lett. 54 1986 [12] Capasso F, Mohammed K and Cho A Y 1986 Appl. Phys. Lett. 48 478 [13] Gossen K W and Lyon S A 1985 Appl. Phys. Lett. 47 289 [14] Choi K K, Levine B F, Bethea C G, Walker J and Malik R J 1987 Appl. Phys. Lett. 50 1814 [15] Ahn D and Chuang S L 1987 Phys. Rev. B 35 4149 [16] Karunasiri R P G, Mii Y J and Wang K L 1990 IEEE Electron Device Lett. 11 227 [17] Noda S, Uemura T, Yamashita T and Sasaki A 1990 J. Appl. Phys. 68 6529 [18] Faist J, Capasso F, Sivco D L, Sirtori C, HutchinsonA L and Cho A Y 1994 Science 264 553 [19] Ozturk E and Sokmen I 2012 Superlattices Microstruct. 52 1010 [20] Karabulut I, Atav U, Safak H and Tomak M 2007 Eur. Phys. J. B 55 283 [21] Chen B, Guo K X, Wang R Z, Zheng Y B and Li B 2008 Eur. Phys. J. B 66 227 [22] Ungan F, Restrepo R L, Mora-Ramos M E, Morales A L and Duque C A 2014 Physica B 434 26 [23] Eseanu N, Niculescu E C and Burileanu L M 2009 Physica E 41 1386 [24] Lima F M S, Amato M A, Nunes O A C, Fonseca A L A, Enders B G and da Silva Jr E F 2009 J. Appl. Phys. 105 123111 [25] Ozturk E, Sari H and Sokmen I 2004 Solid State Commun. 132 497 [26] Mora-Ramos M E, Duque C A, Kasapoglu E, Sari H and Sokmen I 2012 J. Lumin. 132 901 [27] Ozturk E and Sokmen I 2014 J. Lumin. 145 387 [28] Ozturk E 2014 Opt. Commun. 332 136 [29] Ahn D and Chuang S L 1987 IEEE J. Quantum Electron. 23 2196 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|