Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 088901    DOI: 10.1088/0256-307X/30/8/088901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Brownian Markets
Roumen Tsekov*
Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria
Cite this article:   
Roumen Tsekov 2013 Chin. Phys. Lett. 30 088901
Download: PDF(398KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Financial market dynamics are rigorously studied via the exact generalized Langevin equation. Assuming market Brownian self-similarity, the market return rate memory and autocorrelation functions are derived, which exhibit an oscillatory-decaying behavior with a long-time tail, similar to empirical observations. Individual stocks are also described via the generalized Langevin equation. They are classified by their relation to the market memory as heavy, neutral and light stocks, possessing different kinds of autocorrelation functions.
Received: 20 May 2013      Published: 21 November 2013
PACS:  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Jc (Brownian motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/088901       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/088901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Roumen Tsekov
[1] Bachelier L 1900 Ann. Sci. L'école Normale Suppl. 3e série 17 21
[2] Einstein A 1905 Ann. Phys. (Leipzig) 17 549
[3] Black F and Scholes M 1973 J. Polit. Econ. 81 637
[4] Dana R A and Jeanblanc M 2003 Financial Markets in Continuous Time (Berlin: Springer)
[5] Cont R and Tankov P 2004 Financial Modelling with Jump Processes (Boca Raton: CRC)
[6] Rostek S 2009 Option Pricing in Fractional Brownian Markets (Berlin: Springer)
[7] Mantegna R N and Stanley H E 1999 An Introduction to Econophysics (Cambridge: Cambridge University Press)
[8] Voit J 2005 The Statistical Mechanics of Financial Markets (Berlin: Springer)
[9] McCauley J L 2009 Dynamics of Markets (Cambridge: Cambridge University Press)
[10] Ito K 1951 Nagoya Math. J. 3 55
[11] Stratonovich R L 1966 SIAM J. Control 4 362
[12] Tsekov R 1997 J. Chem. Soc. Faraday Trans. 93 1751
[13] Tsekov R and Radoev B 1991 Commun. Dept. Chem. Bulg. Acad. Sci. 24 576
[14] Tsekov R and Radoev B 1992 J. Phys.: Condens. Matter 4 L303
[15] Lee M H 1992 J. Phys.: Condens. Matter 4 10487
[16] Zwanzig R 1960 J. Chem. Phys. 33 1338
[17] Mori H 1965 Prog. Theor. Phys. 33 423
[18] Doob J L 1942 Ann. Math. 43 351
[19] Takahashi M 1996 Financial Eng. Jpn. Markets 3 87
[20] Tsekov R 2010 arXiv:1005.1490 [cond-mat.stat-mech]
[21] Gopikrishnan P, Meyer M, Amaral L A N and Stanley H E 1998 Eur. Phys. J. B 3 139
[22] Gopikrishnan P, Plerou V, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 5305
[23] Plerou V, Gopikrishnan P, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 6519
[24] Gu G F, Chen W and Zhou W X 2008 Physica A 387 495
[25] Plerou V and Stanley H E 2008 Phys. Rev. E 77 037101
[26] Mu G H and Zhou W X 2010 Phys. Rev. E 82 066103
[27] Zhou W X 2012 Quant. Finance 12 1253
[28] Rubin R J 1960 J. Math. Phys. 1 309
Rubin R J 1963 Phys. Rev. 131 964
[29] Sznajd-Weron K and Weron R 2002 Int. J. Mod. Phys. C 13 115
[30] Voit J 2003 Physica A 321 286
[31] Rachev S T, Mittnik S, Fabozzi F J, Focardi S M and Ja?i? T 2007 Financial Econometrics: From Basics to Advanced Modeling Techniques (Hoboken: Wiley)
[32] Frank T D 2005 Nonlinear Fokker-Planck Equations (Berlin: Springer)
[33] Pechukas P 1967 Phys. Rev. 164 174
[34] Baaquie B E 2004 Quantum Finance (Cambridge: Cambridge University Press)
[35] Tsekov R 2007 J. Phys. A: Math. Theor. 40 10945
Related articles from Frontiers Journals
[1] ZHANG Ang-Hui, LI Xiao-Wen, SU Gui-Feng, ZHANG Yi. A Multifractal Detrended Fluctuation Analysis of the Ising Financial Markets Model with Small World Topology[J]. Chin. Phys. Lett., 2015, 32(09): 088901
[2] WANG Chao, XIONG Wan-Ting, WANG You-Gui. Self-Similarity in Game-Locked Aggregation[J]. Chin. Phys. Lett., 2012, 29(12): 088901
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 088901
[4] YAN Yan, LIU Mao-Xin, ZHU Xiao-Wu, CHEN Xiao-Song. Principle Fluctuation Modes of the Global Stock Market[J]. Chin. Phys. Lett., 2012, 29(2): 088901
[5] ZHANG Jiang**, WANG You-Gui . Size Dependency of Income Distribution and Its Implications[J]. Chin. Phys. Lett., 2011, 28(3): 088901
[6] XU Yan, GUO Liang-Peng, DING Ning, WANG You-Gui. Evidence of Scaling in Chinese Income Distribution[J]. Chin. Phys. Lett., 2010, 27(7): 088901
[7] FU Xiu-Jun, Szeto K Y. Competition of Multi-Agent Systems: Analysis of a Three-Company Econophysics Model[J]. Chin. Phys. Lett., 2009, 26(9): 088901
[8] DUAN Wen-Qi, SUN Bo-Liang. Empirical Analysis and Modeling of the Global Economic System[J]. Chin. Phys. Lett., 2009, 26(9): 088901
[9] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 088901
[10] JIANG Shi-Mei, CAI Shi-Min, ZHOU Tao, , ZHOU Pei-Ling. Note on Two-Phase Phenomena in Financial Markets[J]. Chin. Phys. Lett., 2008, 25(6): 088901
[11] DING Ning, WANG You-Gui. Power-Law Tail in the Chinese Wealth Distribution[J]. Chin. Phys. Lett., 2007, 24(8): 088901
[12] DONG Lin-Rong. A Heterogeneous Agent Herding Model with Time and Space Effect[J]. Chin. Phys. Lett., 2006, 23(10): 088901
[13] YANG Wei-Song, LI Ping, ZOU Shan-Shan, WANG Bing-Hong. Local Minority Game with Evolutionary Strategies[J]. Chin. Phys. Lett., 2006, 23(8): 088901
[14] CAI Shi-Min, ZHOU Pei-Ling, YANG Hui-Jie, YANG Chun-Xia, WANG Bing-Hong, ZHOU Tao,. Empirical Study on the Volatility of the Hang-Seng Index[J]. Chin. Phys. Lett., 2006, 23(3): 088901
[15] WANG Peng, WANG Shun-Jin, ZHANG Hua. Generalized Fokker--Planck Equation with Time-Dependent Transport Coefficients and a Quadratic Potential: Its Application in Econophysics[J]. Chin. Phys. Lett., 2005, 22(1): 088901
Viewed
Full text


Abstract