Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047301    DOI: 10.1088/0256-307X/30/4/047301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Characteristics of an Indium-Rich InGaN p–n Junction Grown on a Strain-Relaxed InGaN Buffer Layer
YANG Lian-Hong**, ZHANG Bao-Hua, GUO Fu-Qiang
Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter, Yili Normal University, Yining 835000 Department of Physics, Changji College, Changji 831100
Cite this article:   
YANG Lian-Hong, ZHANG Bao-Hua, GUO Fu-Qiang 2013 Chin. Phys. Lett. 30 047301
Download: PDF(582KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An indium-rich InGaN p-n junction is grown on a strain-relaxed InGaN buffer layer. The results show that the n-InGaN is grown coherently on the buffer layer but the p-InGaN layer exhibits a partial strain relaxation. The fabricated InGaN p-n junction has a low reverse leakage current density on the order of 10?8 A/cm2 within the measured voltage range, and exhibits a wide spectral response due to the presence of band tail states or deep level states which origin from indium composition fluctuation or various defects. The measured peak responsivity at 438 nm is 31 mA/W at zero bias and reaches 118 mA/W at 3 V reverse bias. In addition, the Raman spectra of the p- and n-type InGaN alloys are also analyzed.
Received: 25 October 2012      Published: 28 April 2013
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  81.05.Ea (III-V semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Lian-Hong
ZHANG Bao-Hua
GUO Fu-Qiang
[1] Wierer J J Krames M R, Epler J E, Gardner N F, Craford M G, Wendt J R, Simmons J A and Sigalas M M 2004 Appl. Phys. Lett. 84 3885
[2] Nakamura S 1998 Science 281 956
[3] Narukawa Y, Kawakami Y, Funato M and Fujita S 1997 Appl. Phys. Lett. 70 981
[4] Yang Y, Cao X A and Yan C H 2009 Appl. Phys. Lett. 94 041117
[5] Dahal R, Li J, Aryal K, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 97 073115
[6] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
[7] Cai X M, Zeng S W and Zhang B P 2009 Appl. Phys. Lett. 95 173504
[8] Xue J J, Chen D J, Liu B, Xie Z L, Jiang R L, Zhang R and Zheng Y D 2009 Chin. Phys. Lett. 26 098102
[9] Sang L W, Liao M Y, Koide Y and Sumiya M 2011 Appl. Phys. Lett. 98 103502
[10] Chen D J, Liu B, Lu H, Xie Z L, Zhang R and Zheng Y D 2009 IEEE Electron Device Lett. 30 605
[11] Singh R, Doppalapudi D, Moustakas T D and Romano L T 1997 Appl. Phys. Lett. 70 1089
[12] Fischer A M, Wu Z, Sun K, Wei Q Y, Huang Y, Senda R, Iida D, Iwaya M, Amano H and Ponce F A 2009 Appl. Phys. Express 2 041002
[13] Sang L, Takeguchi M, Lee W, Nakayama Y, Lozach M, Sekiguchi T and Sumiya M 2010 Appl. Phys. Express 3 111004
[14] Alexson D, Bergman L, Nemanich R J, Dutta M, Stroscio M A, Parker C A, Bedair S M, E I-Masry N A and Adar F 2001 J. Appl. Phys. 89 798
[15] Hernandez S, Cusco R, Pastor D, Artus L, O`Donnell K P, Martin R W, Watson I M, Nanishi Y and Calleja E 2005 J. Appl. Phys. 98 013511
[16] Chen D J, Huang Y, Liu B, Xie Z L, Zhang R, Zheng Y D, Wei Y and Narayanamurti V 2009 J. Appl. Phys. 105 063714
[17] Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
Related articles from Frontiers Journals
[1] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition *[J]. Chin. Phys. Lett., 0, (): 047301
[2] Yu Zhao, Yan Teng, Jing-Jun Miao, Qi-Hua Wu, Jing-Jing Gao, Xin Li, Xiu-Jun Hao, Ying-Chun Zhao, Xu Dong, Min Xiong, Yong Huang. Mid-Infrared InAs/GaSb Superlattice Planar Photodiodes Fabricated by Metal–Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2020, 37(6): 047301
[3] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 047301
[4] Zhi-Yu Lin, Zhi-Bin Chen, Jin-Cheng Zhang, Sheng-Rui Xu, Teng Jiang, Jun Luo, Li-Xin Guo, Yue Hao. Polar Dependence of Threading Dislocation Density in GaN Films Grown by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(2): 047301
[5] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 047301
[6] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 047301
[7] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 047301
[8] Jun Luo, Sheng-Lei Zhao, Zhi-Yu Lin, Jin-Cheng Zhang, Xiao-Hua Ma, Yue Hao. Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chin. Phys. Lett., 2016, 33(06): 047301
[9] LV Qian-Qian, YE Han, YIN Dong-Dong, YANG Xiao-Hong, HAN Qin. An Array Consisting of 10 High-Speed Side-Illuminated Evanescently Coupled Waveguide Photodetectors Each with a Bandwidth of 20 GHz[J]. Chin. Phys. Lett., 2015, 32(12): 047301
[10] TANG Xiao-Yu, LU Ji-Wu, ZHANG Rui, WU Wang-Ran, LIU Chang, SHI Yi, HUANG Zi-Qian, KONG Yue-Chan, ZHAO Yi. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Chin. Phys. Lett., 2015, 32(11): 047301
[11] GUO Hong-Yu, LV Yuan-Jie, GU Guo-Dong, DUN Shao-Bo, FANG Yu-Long, ZHANG Zhi-Rong, TAN Xin, SONG Xu-Bo, ZHOU Xing-Ye, FENG Zhi-Hong. High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(11): 047301
[12] LIU Shi-Ming, XIAO Hong-Ling, WANG Quan, YAN Jun-Da, ZHAN Xiang-Mi, GONG Jia-Min, WANG Xiao-Liang, WANG Zhan-Guo. InxGa1?xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%[J]. Chin. Phys. Lett., 2015, 32(08): 047301
[13] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 047301
[14] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 047301
[15] WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun, LU Hai, ZHANG Rong, ZHENG You-Dou. Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes[J]. Chin. Phys. Lett., 2014, 31(05): 047301
Viewed
Full text


Abstract