Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 114216    DOI: 10.1088/0256-307X/29/11/114216
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High Current Transfer Ratio Organic Optocoupler Based on Tandem Organic Light-Emitting Diode as the Input Unit
YANG De-Zhi, SUN Heng-Da, CHEN Jiang-Shan, MA Dong-Ge**
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
Cite this article:   
YANG De-Zhi, SUN Heng-Da, CHEN Jiang-Shan et al  2012 Chin. Phys. Lett. 29 114216
Download: PDF(669KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An organic optocoupler (OOC) is fabricated with a tandem organic light-emitting diode (OLED) as the light source (input unit) and an organic photodiode (OPD) as the detector (output unit). It is found that using the tandem OLED as the input unit can significantly increase the current transfer ratio of the organic optocoupler. When the tandem OLED operates under 8 V and the OPD operates under ?4 V, the current transfer ratio of the optocoupler reaches 5.4%. Simultaneously, the ION/IOFF ratio of the optocoupler reaches 105, which can be attributed to the small leakage current of the OPD, and the high efficiency of the OPD and the tandem OLED.
Received: 16 July 2012      Published: 28 November 2012
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  71.20.Rv (Polymers and organic compounds)  
  81.05.Fb (Organic semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/114216       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/114216
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG De-Zhi
SUN Heng-Da
CHEN Jiang-Shan
MA Dong-Ge
[1] Heeger A J 2001 Angew. Chem. Int. Edit. 40 2591
[2] Padinger F, Rittberger R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[3] Spanggaard H and Krebs F C 2004 Sol. Energy Mater. Sol. Cells 83 125
[4] Shaheen S E, Ginley D S and Jabbour G E 2005 MRS Bull. 30 10
[5] Tietze U, Schenk C and Schmid E 1991 Electron. Circuits: Design Appl. (Berlin: Springer) p 99
[6] Gage S, Evans D, Hodapp M and Sorenson H 1977 Optoelectronics Application Manual (New York: McGraw-Hill) p 14
[7] Yu G, Pakbaz K and Heeger A J 1994 J. Electron. Mater. 23 925
[8] Yao Y, Chen H Y, Huang J S and Yang Y 2007 Appl. Phys. Lett. 90 053509
[9] Stathopoulos N A, Palilis L C, Vasilopoulou M, Botsialas A, Falaras P and Argitis P 2008 Phys. Status Solidi A 205 2522
[10] Dong G F, Zheng H Y, Duan L, Wang L D and Qiu Y 2009 Adv. Mater. 21 2501
[11] Sun Q J, Dong G F, Wang L D and Qiu Y 2011 Sci. Chin. Chem. 54 1017
[12] Wang Z Q, Deng J C, Wu X M, Jing N, Hu Z Y, Cheng X M, Hua Y L, Wei J and Yin S G 2009 Appl. Phys. Lett. 94 193303
[13] Matsumoto T, Nakada T, Endo J, Mori K, Kawamura N, Yokoi A and Kido J 2003 SID Int. Symp. Digest Tech. Papers 34 979
[14] VanSlyke S A, Chen C H and Tang C W 1996 Appl. Phys. Lett. 69 2160
[15] Liao L S, Slusarek W K, Hatwar T K, Ricks M L and Comfort D L 2008 Adv. Mater. 20 324
Related articles from Frontiers Journals
[1] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 114216
[2] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 114216
[3] Xiu-Li Li, Zhi Liu, Lin-Zhi Peng, Xiang-Quan Liu, Nan Wang, Yue Zhao, Jun Zheng, Yu-Hua Zuo, Chun-Lai Xue, Bu-Wen Cheng. High-Performance Germanium Waveguide Photodetectors on Silicon[J]. Chin. Phys. Lett., 2020, 37(3): 114216
[4] Pei Yuan, Xiao-Guang Zhang, Jun-Ming An, Peng-Gang Yin, Yue Wang, Yuan-Da Wu. Improved Performance of a Wavelength-Tunable Arrayed Waveguide Grating in Silicon on Insulator[J]. Chin. Phys. Lett., 2019, 36(5): 114216
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 114216
[6] Bing-Xi Xiang, Lei Wang, Yu-Jie Ma, Li Yu, Huang-Pu Han, Shuang-Chen Ruan. Supercontinuum Generation in Lithium Niobate Ridge Waveguides Fabricated by Proton Exchange and Ion Beam Enhanced Etching[J]. Chin. Phys. Lett., 2017, 34(2): 114216
[7] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 114216
[8] LIANG Han, ZHAN Ke-Tao, HOU Zhi-Ling. Extraordinary Optical Confinement in a Silicon Slot Waveguide with Metallic Gratings[J]. Chin. Phys. Lett., 2015, 32(06): 114216
[9] ZHANG Xi-Lin, LIU Song-Tao, LU Dan, ZHANG Rui-Kang, JI Chen. Design and Fabrication of a 400 GHz InP-Based Arrayed Waveguide Grating with Flattened Spectral Response[J]. Chin. Phys. Lett., 2015, 32(5): 114216
[10] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 114216
[11] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 114216
[12] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 114216
[13] HU Ru, LANG Pei-Lin, ZHAO Yu-Fang, DUAN Gao-Yan, WANG Lu-Lu, DAI Jin, CHEN Zhao, YU Li, XIAO Jing-Hua. Millimeter Propagation and High Confinement in Rhombus-Based Hybrid Plasmonic Waveguides[J]. Chin. Phys. Lett., 2014, 31(09): 114216
[14] Rakibul Hasan Sagor, Md. Ruhul Amin, Md. Ghulam Saber. Design of a Simple Integrated Coupler for SPP Excitation in a Dielectric Coated Ag Thin Film[J]. Chin. Phys. Lett., 2014, 31(06): 114216
[15] ZHANG Xi-Lin, LU Dan, ZHANG Rui-Kang, WANG Wei, JI Chen. A MOCVD-Growth Multi-Wavelength Laser Monolithically Integrated on InP[J]. Chin. Phys. Lett., 2014, 31(06): 114216
Viewed
Full text


Abstract