Chin. Phys. Lett.  2012, Vol. 29 Issue (11): 118901    DOI: 10.1088/0256-307X/29/11/118901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility
XIAO Yao, HUA Da-Yin**
Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
XIAO Yao, HUA Da-Yin 2012 Chin. Phys. Lett. 29 118901
Download: PDF(4770KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We studied the effect of population density in a spatial public goods game. We found that the effect on the evolution of cooperation is very complex when the strategy learning and mobility of players in a long range are considered in a two-dimensional lattice. As the learning range is larger than the mobility range, the system is driven to enter into a cooperation state for a low population density, because a small local group is beneficial to sustain a high level of cooperation. As population density increases to a moderate range, the mobility of players from a domain invaded by defectors supports the evolution stability of cooperation. When the mobility range is larger than the learning range, a formation of compact domains of cooperators promotes cooperation as the population density becomes high.
Received: 30 December 2011      Published: 28 November 2012
PACS:  89.75.Hc (Networks and genealogical trees)  
  87.23.Kg (Dynamics of evolution)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/11/118901       OR      https://cpl.iphy.ac.cn/Y2012/V29/I11/118901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Yao
HUA Da-Yin
[1] Hardin G 1968 Science 162 1243
[2] Hamilton W D 1964 J. Theor. Biol. 7 1
[3] Trivers R L 1971 Q. Rev. Biol. 46 35
[4] Nowak M A and Sigmund K 1998 Nature 393 573
[5] Rand D G 2009 Science 325 1272
[6] Fehr E and Fischbacher U 2003 Nature 425 785
[7] Szolnoki A, Szabo G and Perc M 2011 Phys. Rev. E 83 036101
[8] Sigmund K, De Sila H, Traulsen A and Hauert C 2010 Nature 466 861
[9] Rockenbach B and Milinski M 2006 Nature 444 718
[10] Boyd R, Gintis H, Bowles S and Richerson P 2003 Proc. Natl. Acad. Sci. USA 100 3531
[11] Nowak M A and Sigmund K 1992 Nature 355 250
[12] Traulsen A and Nowak M A 2006 Proc. Natl. Acad. Sci. USA 103 10952
[13] Bowles S 2006 Science 314 1569
[14] Nowak M A and May R M 1992 Nature 359 826
[15] Szabó G and Fáth G 2007 Phys. Rep. 446 97
[16] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104
[17] Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl. Acad. Sci. USA 103 3490
[18] Ohtsuki H, Nowak M A and Pacheco J M 2007 Phys. Rev. Lett. 98 108106
[19] Santos F C, Santos M D and Pacheco J M 2008 Nature 454 213
[20] Zimmermann M G, Eguíluz V M and San Miguel M 2004 Phys. Rev. E 69 065102(R)
[21] Zimmermann M G and Eguíluz V M 2005 Phys. Rev. E 72 056118
[22] Ebel H and Bornholdt S 2002 Phys. Rev. E 66 056118
[23] Helbing D and Yu W J 2009 Proc. Natl. Acad. Sci. USA 106 3680
[24] Nowak M A, Bonhoeffer S and May R M 1994 Int. J. Bifur. Chaos 4 33
[25] Wakano J Y, Nowak M A and Hauert C 2009 Proc. Natl. Acad. Sci. USA 106 7910
[26] Vainstein M H, Arenzon J J 2001 Phys. Rev. E 64 051905
[27] Hauert C, De Monte S, Hofbauer J and Sigmund K 2002 Science 296 1129
Hauert C, De Monte S, Hofbauer J and Sigmund K 2002 J. Theor. Biol. 218 187
[28] Szabó G and Hauert C 2002 Phys. Rev. Lett. 89 118101
[29] Szolnoki A, Szabó G and Perc M 2011 Phys. Rev. E 83 036101
[30] Xu Z J, Wang Z and Zhang L Zh 2009 Phys. Rev. E 80 061104
[31] Xu Zh J, Wang Zh, Song H P and Zh L Zh 2010 Europhys. Lett. 90 20001
[32] Hauert C, Holmes M and Doebeli M 2006 Proc. R. Soc. B 273 2565
[33] Arenas A, Camacho J, Cuesta J A, Requejo R J 2011 J. Theor. Biol. 279 113
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 118901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 118901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 118901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 118901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 118901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 118901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 118901
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 118901
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 118901
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 118901
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 118901
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 118901
[13] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 118901
[14] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 118901
[15] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 118901
Viewed
Full text


Abstract