ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
An Effective Eigenchannel R-Matrix Method for Calculating Electron-Ion Scattering Processes with Spectroscopic Precision |
GAO Xiang1**, LI Jia-Ming2,3 |
1Beijing Computational Science Research Center, Beijing 100084
2Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
3Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084
|
|
Cite this article: |
LI Jia-Ming, GAO Xiang 2012 Chin. Phys. Lett. 29 033101 |
|
|
Abstract The electron-ion scattering processes are very important in various scientific research fields such as astrophysical studies and inertial confinement fusion research. We report our recent development of an efficient method for providing such atomic data with spectroscopic precision. Based on the Breit–Pauli and the Dirac R-matrix theory, we develop two eigenchannel R-matrix codes, referred to as R-eigen (non-relelativistic eigenchannel R-matrix) and R-R-eigen (relativistic eigenchannel R-matrix), to directly calculate the physical quantities in multichannel quantum defect theory in the whole energy regions. From such physical quantities, we can obtain all energy levels and the related scattering cross sections with accuracies comparable with spectroscopic precision. The e+Kr+ system is used as an illustration example, the degrees of accuracies of scattering matrices are calculated within about 2%, which should be much more accurate than state-of-the-art scattering experiments.
|
Keywords:
31.15.A-
31.15.Vj
31.30.J-
34.80.Dp
|
|
Received: 22 November 2011
Published: 11 March 2012
|
|
PACS: |
31.15.A-
|
(Ab initio calculations)
|
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
31.30.J-
|
(Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
|
|
|
[1] Dalgarno A 1979 Adv. At., Mol. Phys. 15 37
[2] Kallman T R and Palmeri P 2007 Rev. Mod. Phys. 79 79
[3] Beiersdorfer P 2003 Annu. Rev. Astron. Astrophys. 41 343
[4] Lindl J D et al 2004 Phys. Plasmas 11 339
[5] 2005 Nuclear Fusion Research: Understanding Plasma Surface Interactions in Springer Series in Chemical Physics (Berlin: Springer) vol 78
[6] Seaton M J and Opacity Project Team 1995 The Opacity Project (Bristol: Institute of Physics Publishing) vols 1 and 2
[7] Lin C C et al 2005 Adv. At., Mol. Phys. 51 385
Williams I D 1999 Rep. Prog. Phys. 62 1431
[8] Seaton M J 1983 Rep. Prog. Phys. 46 167
[9] Li J M 1980 Acta. Phys. Sin. 29 419 (in Chinese)
[10] Li J M et al 2010 Plasma Sci. Technol. 12 335
[11] Gao X et al 2011 Chin. Phys. Lett. 28 033101
[12] Burke P G and Robb W D 1975 Adv. At. Mol. Phys. 11 143
Berrington K A et al 1995 Comput. Phys. Commun. 92 290
[13] Chang J J 1975 J. Phys. B: At. Mol. Phys. 10 3335
Norrington P H and Grant I P 1987 J. Phys. B: At. Mol. Phys. 20 4869
Ait-Tahar S, Grant I P and Norrington P H 1996 Phys. Rev. A 54 3984
[14] Seaton M J 1985 J. Phys. B: At. Mol. Phys. 18 2111
[15] Berrington K A et al 1987 J. Phys. B: At. Mol. Phys. 20 6379
[16] Li J M et al 1997 Phys. Rev. A 55 3239
Han X Y and Li J M 2006 Phys. Rev. A 74 062711
[17] Fano U and Lee C M (Li J M) 1973 Phys. Rev. Lett. 31 1573
Lee C M (Li J M) 1974 Phys. Rev. A 10 584
[18] Fano U 1975 J. Opt. Soc. Am. 65 979
Aymar M, Greene C H and Luc-Koenig E 1996 Rev. Mod. Phys. 68 1015
[19] Lee C M (Li J M) and Lu K T 1973 Phys. Rev. A 8 1241
[20] Huang W et al 1995 Phys. Rev. A 52 2770
Zou Y et al 1995 Acta. Phys. Sin. 44 50 (in Chinese)
[21] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3. 1.5) http: //physics.nist.gov/PhysRefData/ASD/levels_form.html [7 January 2010] (Gaithersburg: National Institute of Standards and Technology)
[22] Seaton M J 1982 Comput. Phys. Commun. 25 87
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|