Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020502    DOI: 10.1088/0256-307X/29/2/020502
GENERAL |
Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay
ZHENG Yong-Ai
College of Information Engineering, Yangzhou University, Yangzhou 225127
Cite this article:   
ZHENG Yong-Ai 2012 Chin. Phys. Lett. 29 020502
Download: PDF(476KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Time-delay Takagi-Sugeno fuzzy drive-response dynamical networks (TD-TSFDRDNs) are defined by extending the drive-response dynamical networks. Based on the LaSalle invariant principle, a simple and systematic adaptive control scheme is proposed to synchronize the TD-TSFDRDNs with a desired scalar factor. A sufficient condition for the generalized projective synchronization in TD-TSFDRDNs is derived. Moreover, numerical simulations are provided to verify the correctness and effectiveness of the scheme.
Keywords: 05.45.Xt      84.35.+i      05.45.Pq     
Received: 14 October 2011      Published: 11 March 2012
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  84.35.+i (Neural networks)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Yong-Ai
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[3] Xu D, Ong W L and Li Z 2002 Phys. Lett. A 305 167
[4] Xu D, Chee C Y and Li C 2004 Chaos Solitons Fractals 22 175
[5] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501
[6] Wu Z Y and Fu X C 2010 Chin. Phys. Lett. 27 050502
[7] Wang X Y, Nian F Z and Guo G 2009 Phys. Lett. A 373 1754
[8] Wang X Y and He Y J 2008 Phys. Lett. A 372 435
[9] Guo L X, Xu Z Y and Hu M F 2008 Chin. Phys. Lett. 25 2816
[10] Hu M, Yang Y, Xu Z, Zhang R and Guo L 2007 Physica A 381 457
[11] Zhao Y and Yang Y 2008 Phys. Lett. A 372 7165
[12] Sun M, Zeng C and Tian L 2008 Phys. Lett. A 372 6904
[13] Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man. Cybern. 15 116
[14] Lian K Y, Chiu C S, Chiang T S and Liu P 2001 IEEE Trans. Fuzzy Syst. 9 539
[15] Lian K Y, Chiang T S, Chiu C S and P, Liu 2001 IEEE Trans. Syst. Man. Cybern. B 31 66
[16] Wang H O, Tanaka K and Ikeda T 1996 IEEE Int. Symp. Circuits Syst. 3 209
[17] Wang Y W, Guan Z H and Wang H O, 2005 Phys. Lett. A 339 325
[18] Zheng Y and Chen G 2009 Chaos Solitons Fractals 39 2002
[19] Kim J H, Park C W, Kim E and Park M 2005 Phys. Lett. A 334 295
[20] Wang X Y and Meng J 2008 Chaos 18 033102
[21] Langville A N, Stewart W J and Comput J 2004 Appl. Math. 167 429
[22] Lu J and Cao J 2007 Physica A 382 672
[23] Tanaka K, Ikeda T and Wang H O 1998 IEEE Trans. Circuits Syst. 45 1021
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020502
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 020502
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[6] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 020502
[7] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 020502
[8] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 020502
[9] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 020502
[10] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 020502
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 020502
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 020502
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 020502
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 020502
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 020502
Viewed
Full text


Abstract