Chin. Phys. Lett.  2012, Vol. 29 Issue (2): 020501    DOI: 10.1088/0256-307X/29/2/020501
GENERAL |
Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries
Hermann T. Tchokouansi1,2**, Victor K. Kuetche1,2, Abbagari Souleymanou1,2, Thomas B. Bouetou1,2,3, Timoleon C. Kofane2
1National Advanced School of Engineering, University of Yaounde I, P.O. Box 8390, Cameroon
2Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon
3Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon
Cite this article:   
Victor K. Kuetche, Timoleon C. Kofane, Thomas B. Bouetou et al  2012 Chin. Phys. Lett. 29 020501
Download: PDF(414KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media. Based upon the Wahlquist–Estabrook approach, we construct the Lie-algebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs, which are particularly useful in soliton theory. In the wake of previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2+1)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation, the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention.
Keywords: 05.45.Yv      02.30.Ik     
Received: 28 July 2011      Published: 11 March 2012
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/2/020501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Victor K. Kuetche
Timoleon C. Kofane
Thomas B. Bouetou
Hermann T. Tchokouansi
Abbagari Souleymanou
[1] Brabec T and Kraus Z F 2000 Rev. Mod. Phys. 72 545
[2] Kim A V and Skobelev S A 2011 Phys. Rev. A 83 063832
[3] Mamyshev P V and Chernikov S V 1990 Opt. Lett. 15 1076
[4] Banici R and Ursescu D 2011 Eur. Phys. Lett. 94 44002
[5] Lin Y Y, Chen I H and Lee R K 2011 Phys. Rev. A 83 043832
[6] Kozlov S A and Sazonov S V 1997 JETP 84 221
[7] Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas (Oxford: Pergamon Press)
[8] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic)
[9] Harrison B K 2005 Sym. Int. Geo. M. Appl. (SIGMA) 1 1
[10] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[11] Schäfer T and Wayne C E 2004 Physica D 196 90
[12] Chung Y, Jones C K R T, Schäfer T and Wayne C E 2005 Nonlinearity 18 1351
[13] Ichikawa Y H, Konno K and Wadati M 1981 J. Phys. Soc. Jpn. 50 1799
[14] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. A 40 5585
[15] Yao Y and Zeng Y 2011 J. Phys. Soc. Jpn. 80 064004
[16] Cartan E 1945 Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques (Paris: Hermann)
[17] Kobayashi S and Nomisu K 1963 Foundations of Differential Geometry (New York: Wiley)
[18] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 47 1698
[19] Morris H C 1976 J. Math. Phys. 17 1870
[20] Morris H C 1977 J. Math. Phys. 18 533
[21] Hermann R 1976 Phys. Rev. Lett. 36 835
[22] Hermann R 1975 Interdisciplinary Mathematics (Brookline: Math. Sci. Press)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020501
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020501
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020501
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020501
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020501
[13] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020501
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020501
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020501
Viewed
Full text


Abstract