Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 010305    DOI: 10.1088/0256-307X/29/1/010305
GENERAL |
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity
S. P. Toh1**, Hishamuddin Zainuddin2,3, Kim Eng Foo2,4
1Faculty of Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
2Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
Cite this article:   
S. P. Toh, Hishamuddin Zainuddin, Kim Eng Foo 2012 Chin. Phys. Lett. 29 010305
Download: PDF(438KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 22. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.
Received: 23 September 2011      Published: 07 February 2012
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/010305       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/010305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. P. Toh
Hishamuddin Zainuddin
Kim Eng Foo
[1]  Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 
[2]  Thirring W, Bertlmann R A, Kohler P and Narnhofer H 2011 Eur. Phys. J. D 64 181 
[3]  Peres A 1996 Phys. Rev. Lett. 77 1413 
[4]  Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1 
[5]  Horodecki R and Horodecki M 1996 Phys. Rev. A 54 1838 
[6]  Ericsson A 2002 Phys. Lett. A 295 256 
[7]  Aravind P K 1997 Phys. Lett. A 233 7 
[8]  Akhtarshenas S J and Jafarizadeh M A 2004 J. Phys. A: Math. Gen. 37 2965 
[9]  Leinaas J M, Myrheim J and Ovrum E 2006 Phys. Rev. A 74 012313 
[10]  Avron J E, Bisker G and Kenneth O 2007 J. Math. Phys. 48 102107 
[11]  Kaszlikowski D, Lim J Y, Oi D K L, Willeboordse F H, Gopinathan A and Kwek L C, G 2005 Phys. Rev. A 71 012309 
[12]  Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 
[13]  Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 
[14]  Wootters W K 1988 Phys. Rev. Lett. 80 2245 
[15]  Vedral V, Pleino M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 
[16]  yczkowski K, Horodecki P, Sanpera and Lewenstein M 1998 Phys. Rev. A 58 883 
[17]  Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 
[18]  Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 
[19]  Al Qasimi A and James F F V 2011 Phys. Rev. A 83 032101 
[20]  Mundarain D F and Stephany J arXiv:0712.1015v2[quant-ph] 
[21]  Ramsak A 2011 New J. Phys. 13 103037 
Related articles from Frontiers Journals
[1] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 010305
[2] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 010305
[3] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 010305
[4] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 010305
[5] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 010305
[6] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 010305
[7] Bing-Bing Chai, Jin-Liang Guo. Distillability of Sudden Death in Qutrit-Qutrit Systems under Global Mixed Noise[J]. Chin. Phys. Lett., 2019, 36(5): 010305
[8] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 010305
[9] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 010305
[10] Sheng-Li Zhang, Chen-Hui Jin, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou, Guang-Can Guo. Decoy State Quantum Key Distribution via Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2016, 33(12): 010305
[11] Yong-Gang Tan, Qiang Liu. Measurement-Device-Independent Quantum Key Distribution with Two-Way Local Operations and Classical Communications[J]. Chin. Phys. Lett., 2016, 33(09): 010305
[12] Jin-Tao Tan, Yun-Rong Luo, Zheng Zhou, Wen-Hua Hai. Combined Effect of Classical Chaos and Quantum Resonance on Entanglement Dynamics[J]. Chin. Phys. Lett., 2016, 33(07): 010305
[13] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 010305
[14] Hong-Mei Zou, Mao-Fa Fang. Controlling Entropic Uncertainty in the Presence of Quantum Memory by Non-Markovian Effects and Atom–Cavity Couplings[J]. Chin. Phys. Lett., 2016, 33(07): 010305
[15] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 010305
Viewed
Full text


Abstract