GENERAL |
|
|
|
|
Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity |
S. P. Toh1**, Hishamuddin Zainuddin2,3, Kim Eng Foo2,4 |
1Faculty of Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
2Laboratory of Computational Sciences and Mathematical Physics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
4Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia |
|
Cite this article: |
S. P. Toh, Hishamuddin Zainuddin, Kim Eng Foo 2012 Chin. Phys. Lett. 29 010305 |
|
|
Abstract A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted by a very simple geometrical representation of a tetrahedron with sides of length 2 √2. Based on this geometric representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which the sum of their concurrence is equal to one.
|
|
Received: 23 September 2011
Published: 07 February 2012
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Thirring W, Bertlmann R A, Kohler P and Narnhofer H 2011 Eur. Phys. J. D 64 181 [3] Peres A 1996 Phys. Rev. Lett. 77 1413 [4] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1 [5] Horodecki R and Horodecki M 1996 Phys. Rev. A 54 1838 [6] Ericsson A 2002 Phys. Lett. A 295 256 [7] Aravind P K 1997 Phys. Lett. A 233 7 [8] Akhtarshenas S J and Jafarizadeh M A 2004 J. Phys. A: Math. Gen. 37 2965 [9] Leinaas J M, Myrheim J and Ovrum E 2006 Phys. Rev. A 74 012313 [10] Avron J E, Bisker G and Kenneth O 2007 J. Math. Phys. 48 102107 [11] Kaszlikowski D, Lim J Y, Oi D K L, Willeboordse F H, Gopinathan A and Kwek L C, G 2005 Phys. Rev. A 71 012309 [12] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [13] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022 [14] Wootters W K 1988 Phys. Rev. Lett. 80 2245 [15] Vedral V, Pleino M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452 [16] yczkowski K, Horodecki P, Sanpera and Lewenstein M 1998 Phys. Rev. A 58 883 [17] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314 [18] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901 [19] Al Qasimi A and James F F V 2011 Phys. Rev. A 83 032101 [20] Mundarain D F and Stephany J arXiv:0712.1015v2[quant-ph] [21] Ramsak A 2011 New J. Phys. 13 103037 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|