FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth |
SHAO Yong-Bo1**, ZHAO Ling-Juan1, YU Hong-Yan1,2, QIU Ji-Fang1, QIU Ying-Ping1, PAN Jiao-Qing1, WANG Bao-Jun1, ZHU Hong-Liang1, WANG Wei1
|
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
2School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
|
|
Cite this article: |
SHAO Yong-Bo, ZHAO Ling-Juan, YU Hong-Yan et al 2011 Chin. Phys. Lett. 28 114207 |
|
|
Abstract A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550 nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).
|
Keywords:
42.79.Hp
81.07.St
84.37.+q
|
|
Received: 12 April 2011
Published: 30 October 2011
|
|
PACS: |
42.79.Hp
|
(Optical processors, correlators, and modulators)
|
|
81.07.St
|
(Quantum wells)
|
|
84.37.+q
|
(Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))
|
|
|
|
|
[1] Cheng Y B et al 2009 IEEE Photon. Technol. Lett. 21 356
[2] Makino S et al 2009 Indium Phosphide & Related Materials (Newport Beach, CA, USA 10–14 May 2009) ThB1.1
[3] Liu H B et al 2008 Chin. Phys. Lett. 25 3670
[4] Hou L P et al 2005 Semicond. Sci. Technol. 20 912
[5] Li G L et al 1999 IEEE Trans. Microwave Theor. Tech. 47 1177
[6] Nam S et al 2003 IEEE J. Sel. Top. Quantum Electron. 9 763
[7] Irmscher S, Lewen R and Eriksson U 2002 IEEE Photon. Technol. Lett. 14 923
[8] Tang Y B et al 2008 Opt. Commun. 281 5177
[9] Zhou J Y et al 2004 Materials, Active Devices, and Optical Amplifiers 5280 403
[10] Abedi K, Ahmadi V and Moravvej-Farshi M K 2009 Opt. Quantum Electron. 41 719
[11] Chiu Y J et al 2005 IEEE Photon. Technol. Lett. 17 2065
[12] Lin F Z, Chiu Y J and Wu T H 2007 IEEE Photon. Technol. Lett. 19 276
[13] Wu T H, Chiu Y J and Lin F Z 2008 IEEE Photon. Technol. Lett. 20 1261
[14] Shi J W et al 2005 IEEE Photon. Technol. Lett. 17 2068
[15] Shi J W et al 2007 IEEE Photon. Technol. Lett. 19 345
[16] Hojfeldt S and Mork J 2002 IEEE J. Sel. Top. Quantum Electron. 8 1265
[17] Yang H et al 2008 Semicond. Sci. Technol. 23 105011 (5 pp)
[18] Kawano K et al 1992 IEEE J. Quantum Electron. 28 224
[19] Li G L et al 2000 Electron. Lett. 36 818
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|