Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 104501    DOI: 10.1088/0256-307X/28/10/104501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion
ZHANG Yi**
College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011
Cite this article:   
ZHANG Yi 2011 Chin. Phys. Lett. 28 104501
Download: PDF(391KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The integration method of a dynamical system of relative motion is studied, and the method of variation of parameters for the dynamical equations of relative motion is presented. First, the dynamic equations of relative motion are brought into the frame of generalized Birkhoffian systems and are expressed in the contravariant algebraic form. Second, an auxiliary system is constructed and its complete solution is found. Finally, the variation of parameters is given, and a complete solution of the problem is obtained by taking advantage of the properties of generalized canonical transformations. An example is given to illustrate the application of the results.
Keywords: 45.20.Jj      02.30.Hq      02.30.Rz     
Received: 14 February 2011      Published: 28 September 2011
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Rz (Integral equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/104501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/104501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yi
[1] Whittaker E T 1952 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies 4th edn (Cambridge: Cambridge University)
[2] Lur'e A I 1961 Analytical Mechanics (Moscow: GIFML) (in Russian)
[3] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology) (in Chinese)
[4] Mei F X 1988 Special Problems in Analytical Mechanics (Beijing: Beijing Institute of Technology) (in Chinese)
[5] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology) (in Chinese)
[6] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[7] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology) (in Chinese)
[8] Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology)
[9] Mei F X and Liu G L 2009 Proceedings of ICNM (Shanghai 28–31 April 2009) p 1262
[10] Liu G L, Qiao Y F, Zhang J F and Mei F X 1989 Acta Mech. Sin. 21 742 (in Chinese)
[11] Mashhoon B 1988 Phys. Lett. A 126 393
[12] Luo S K 1991 Appl. Math. Mech. 12 927
[13] Luo S K 1993 Appl. Math. Mech. 14 907
[14] Zhang Y and Mei F X 1998 J. Beijing Institute of Technology 7 12
[15] Liu R W, Fu J L and Mei F X 1998 J. Beijing Institute of Technology 7 221
[16] Luo S K, Chen X W and Fu J L 2001 Mech. Res. Commun. 28 463
[17] Zakaria K 2003 Physica A 327 221
[18] Chen X W, Wang M Q and Wang X M 2005 Commun. Theor. Phys. 43 577
[19] Qiao Y F, Zhao S H and Li R J 2007 Commun. Theor. Phys. 47 217
[20] Hou Q B, Li Y C, Wang J and Xia L L 2007 Commun. Theor. Phys. 48 795
[21] Mei F X and Wu H B 2009 Acta Phys. Sin. 58 5919 (in Chinese)
[22] Chen X W, Zhao Y H and Li Y M 2009 Chin. Phys. B 18 3139
[23] Zhang Y 2009 Chin. Phys. Lett. 26 120305
[24] Zhang Y 2010 Acta Armamentarii 31 58 (in Chinese)
[25] Rumyantsev V V and Sumbatov A S 1978 Z. Appl. Math. Mech. 58 477
[26] Mei F X 2009 Dynamis of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology)
[27] Vujanović B 1984 Int. J. Non-Linear Mech. 19 383
[28] Vujanović B 1979 Acta Mech. 34 167
[29] Mei F X 1992 Huanghuai J. 8 1 (in Chinese)
[30] Zhang Y 1996 J. Suzhou Institute of Urban Construction and Environmental Protection 9 13 (in Chinese)
[31] Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag)
[32] Zhang Y and Shang M 2011 Chin. Phys. B 20 024501
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 104501
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 104501
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 104501
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 104501
[5] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 104501
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 104501
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 104501
[8] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 104501
[9] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 104501
[10] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 104501
[11] Gabriela A. Casas**, Paulo C. Rech*** . Numerical Study of a Three-Dimensional Hénon Map[J]. Chin. Phys. Lett., 2011, 28(1): 104501
[12] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 104501
[13] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 104501
[14] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 104501
[15] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 104501
Viewed
Full text


Abstract