Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 104701    DOI: 10.1088/0256-307X/28/10/104701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Flow Characteristics of Deionized Water in Microtubes Absorbing Fluoro-Alkyl Silanes
QU Chao, SONG Fu-Quan**
Department of Physics, Zhejiang Normal University Jinhua 321004
Cite this article:   
QU Chao, SONG Fu-Quan 2011 Chin. Phys. Lett. 28 104701
Download: PDF(575KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to find the drag reduction mechanism of surface wettability, some experiments are carried out to research the flow of deionized water through microtubes. The flow rate of liquid through microtubes adsorbing Fluoro–Alkyl silanes (FAS) or not are compared. The inner diameters of the microtubes are 100 µm, 75 µm and 50 µm, respectively. The relations of shear rate and slip velocity, and shear rate and slip length are discussed. The inner surface wettability of the microtubes changes from hydrophilic at a contact angle of 23° to weak hydrophobic at a contact angle of 107° by adsorbing FAS. The results indicate that the flow rate in microtubes adsorbing FAS is larger than those without FAS, the efficiency of drag reduction if about 13%, the slip velocity near the wall is proportional to the shear rate and the slip length remains invariant for different shear rates in microtubes with different diameters.
Keywords: 47.15.Rq      47.15.Cb     
Received: 10 January 2011      Published: 28 September 2011
PACS:  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
  47.15.Cb (Laminar boundary layers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/104701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/104701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Chao
SONG Fu-Quan
[1] Tao R, Quan X B and Xu J Z 2001 Engin. Therm. Phys. 22 575
[2] Pfahler J et al 1991 Am. Soc. Mech. Engin. 32 49
[3] Song F Q 2004 Ziran Zazhi 26 128 (in Chinese)
[4] Peiyi Wu and Little W A 1983 Cryogenics 23 73
[5] Pfahler J et al 1990 Am. Soc. Mech. Engin. 19 149
[6] Mara G M and Li Dong Q 1999 Heat and Fluid Flow 20 142
[7] Zhang S S, Han K J and Cheng J 2007 Instrum. Tech. Sensors 3 46 (in Chinese)
[8] Li Z H, Zhou X B and Zhu S N 2002 Acta Mech. Sin. 34 432 (in Chinese)
[9] Hao X Q, Wang L, Ding Y C, He Z B and Lu B H 2009 Lubrication and Engineering 34 26 (in Chinese)
[10] Huo S B, Yu J Z, Li Y F, Liu Y, Sun X Y and Song S P 2007 Chem. Indust. Engin. 58 2721 (in Chinese)
[11] Tretheway D and Meinhart C 2002 Phys. Fluids 14 912
[12] Tretheway D and Meinhart C A 2004 Phys. Fluids 16 1509
[13] Hao P F, Wang X Y, Yao Z H and Zhu K Q 2009 J. Exp. Fluid Mech. 23 715 (in Chinese)
[14] Zuo J C 2009 Mast Dissertation (ZheJiang: Zhejiang Normal University)
[15] Hannon L, Lie G C and Clementi E 1986 Phys. Lett. A 119 174
[16] Bhattacharya DK and Lie G C 1989 Phys. Rev. Lett. 62 897
[17] Thompson P A and Robbins M 1989 Phys. Rev. Lett. 63 766
[18] Sun M and Ebner C 1992 Phys. Rev. A 46 4813
[19] Wu C W and Ma G J 2004 Sci. Chin. G: Phys. Mech. Astron. 34 681
[20] Song F Q, Wang J D and Liu H L 2010 Chin. Phys. Lett. 27 024704
[21] Zhao S L 2008 Mast Dissertation (Liaoning: DaLian University of Technology)
[22] Jiang R J, Song F Q and Li H M 2006 Chin. Phys. Lett. 23 3305
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 104701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 104701
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 104701
[4] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 104701
[5] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 104701
[6] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 104701
[7] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 104701
[8] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 104701
[9] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 104701
[10] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 104701
[11] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 104701
[12] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 104701
[13] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 104701
[14] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 104701
[15] H. Saleh, I. Hashim. Flow Reversal of Fully-Developed Mixed MHD Convection in Vertical Channels[J]. Chin. Phys. Lett., 2010, 27(2): 104701
Viewed
Full text


Abstract