Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 104301    DOI: 10.1088/0256-307X/28/10/104301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory
FAN Li**, ZHANG Shu-Yi, ZHANG Hui
Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
FAN Li, ZHANG Shu-Yi, ZHANG Hui 2011 Chin. Phys. Lett. 28 104301
Download: PDF(610KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tubular acoustic metamaterials with negative densities composed of periodical membranes set up along pipes are studied with the fluid impedance theory. In addition to the conventional forbidden bands induced by the Bragg-scattering due to the periodic distributions of different acoustic impedances, the low-frequency forbidden band (LFB) with the low-frequency limit of zero Hertz is studied, in which the LFB is explained with acoustic impedance matching and the Bloch theory. Furthermore, the influences of the structural parameters of the tubular acoustic metamaterials on the transmission characteristics, such as the transmission coefficients, dispersion curves, widths of forbidden and pass bands, fluctuations in pass bands, etc., are evaluated, which can be used in the optimization of the acoustic insulation ability of the metamaterials.
Keywords: 43.35.Gk      43.20.Bi      43.20.Ks      43.20.Rz     
Received: 13 May 2011      Published: 28 September 2011
PACS:  43.35.Gk (Phonons in crystal lattices, quantum acoustics)  
  43.20.Bi (Mathematical theory of wave propagation)  
  43.20.Ks (Standing waves, resonance, normal modes)  
  43.20.Rz (Steady-state radiation from sources, impedance, radiation patterns, boundary element methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/104301       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/104301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Li
ZHANG Shu-Yi
ZHANG Hui
[1] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[2] Liu Z Y, Chan C T and Sheng P 2005 Phys. Rev. B 71 014103
[3] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[4] Cheng Y and Liu X J 2009 Chin. Phys. Lett. 26 014301
[5] Li Y, Hou Z L, Fu X J and Assouar B M 2010 Chin. Phys. Lett. 27 074303
[6] Yang Z, Mei J, Yang M, Chan N H and Sheng P 2008 Phys. Rev. Lett. 101 204301
[7] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C and Zhang X 2006 Nature Mater. 5 452
[8] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2009 J. Phys.: Condens. Matter. 21 175704
[9] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2009 Phys. Lett. A 373 4464
[10] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2010 Phys. Rev. Lett. 104 054301
[11] Lee S H, Park C M, Seo Y M, Wang Z G and Kim C K 2010 Phys. Rev. B 81 241102
[12] Cheng Y, Xu J Y and Liu X J 2008 Phys. Rev. B 77 045134
[13] Bongard F, Lissek H and Mosig J R 2010 Phys. Rev. B 82 094306
[14] Kinsler L E, Frey A R, Coppens A B and Sanders J V 1977 Fundamentals of Acoustics (New York: John Wiley & Sons, Inc.) chap 9 p 200
[15] Bradley C E 1994 J. Acoust. Soc. Am. 96 1844
Related articles from Frontiers Journals
[1] DAI Yu-Rong, DING De-Sheng. Further Notes on the Gaussian Beam Expansion[J]. Chin. Phys. Lett., 2012, 29(2): 104301
[2] ZHANG Hui**, ZHANG Shu-Yi, FAN Li . Resonance Effects of Bilayered Piezoelectric Films Used for Bulk Acoustic Wave Sensors[J]. Chin. Phys. Lett., 2011, 28(11): 104301
[3] LIU Wei, YANG Jun. A Simple and Accurate Method for Calculating the Gaussian Beam Expansion Coefficients[J]. Chin. Phys. Lett., 2010, 27(12): 104301
[4] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 104301
[5] ZHANG Qin-Lei, YANG Guang-Can. Experimental Investigation of Energy Level Dynamics in luminium Blocks with Temperature Distribution[J]. Chin. Phys. Lett., 2008, 25(8): 104301
[6] LIANG Bin, CHENG Jian-Chun. Optimal Acoustic Attenuation of Weakly Compressible Media Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2007, 24(6): 104301
[7] XIAO Yu-Meng, TAO Zhi-Yong, WANG Xin-Long. Higher-Order Bragg Resonance in Gravity Surface Waves over Periodic Bottoms[J]. Chin. Phys. Lett., 2006, 23(7): 104301
[8] TAO Zhi-Yong, XIAO Yu-Meng, WANG Xin-Long. Non-Bragg Resonance of Standing Acoustic Wave in a Cylindrical Waveguide with Sinusoidally Perturbed Walls[J]. Chin. Phys. Lett., 2005, 22(2): 104301
[9] YANG Jun, SHA Kan, GAN Woon-Seng, YAN Yong-Hong, TIAN Jing. A Simplified Algorithm for Impedance Calculation of Arbitrarily Shaped Radiators[J]. Chin. Phys. Lett., 2005, 22(10): 104301
[10] ZHANG Yu, LIU Jin-Qiu, DING De-Sheng. Sound Field Calculations of Elliptical Pistons by the Superposition of Two-Dimensional Gaussian Beams[J]. Chin. Phys. Lett., 2002, 19(12): 104301
[11] MAA Dahyou (MA Dayou). EXACT FORMULAS OF NON-LINEAR STANDING WAVES[J]. Chin. Phys. Lett., 1990, 7(5): 104301
Viewed
Full text


Abstract