FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Quantum Discord Dynamics in Two Different Non-Markovian Reservoirs |
DING Bang-Fu1**, WANG Xiao-Yun1**, LIU Jing-Feng2, YAN Lin1, ZHAO He-Ping1
|
1College of Physical Science and Information Engineering, Jishou University, Jishou 416000
2 Colleges of Science, South China Agriculture University, Guangzhou 510642
|
|
Cite this article: |
DING Bang-Fu, WANG Xiao-Yun, LIU Jing-Feng et al 2011 Chin. Phys. Lett. 28 104216 |
|
|
Abstract The quantum discord dynamics of two non-coupled two-level atoms independently interacting with their reservoir is studied under two kinds of non-Markovian conditions, namely, an off-resonant case with atomic transition frequency and a photonic band gap. In the first case, the phenomenon of the quantum discord loss and the oscillatory behavior of the quantum discord can occur by changing the detuning quantity and reducing the spectral coupling width for any initial Bell state. Under the second condition, the trapping phenomenon of the quantum discord can be presented by adjusting the width of gap, that is, the quantum discord of two atoms keep a nonzero constant for a long time.
|
Keywords:
42.50.Lc
03.65.Yz
03.67.Mn
|
|
Received: 18 May 2011
Published: 28 September 2011
|
|
PACS: |
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[2] Cover T M and Thomas J A 2006 Elements of Information Theory (New York: John Wiley & Sons)
[3] Bennett C H, Brassard G and Creoeau C 1993 Phys. Rev. Lett. 70 1895
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Divincenzo D P 2000 Fort. Phys. 48 9
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Henderson L and Vedral V 2003 Phys. Rev. Lett. 90 050401
[8] Luo S L 2008 Phys. Rev. A 77 042303
[9] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[10] Datta A, Shaji A, Caves C M 2008 Phys. Rev. Lett. 100 050502
[11] Werlang T, Souza S, Fanchini F F and Villasboas C J 2009 Phys. Rev. A 80 024103
[12] Xu G F and Tong D M 2011 Chin. Phys. Lett. 28 060305
[13] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[14] Modi K, Paterek T, Son W, Vedral V and Wiiamson M 2010 Phys. Rev. Lett. 104 080501
[15] Dillenschneiider R and Lutz E 2009 Eur. Phys. Lett. 88 50003
[16] Satandy M S 2009 Phys. Rev. A 80 022108
[17] Cui J and Fan H 2009 J. Phys. A: Math. Theor. 43 045305
[18] Werlang T, Sonza S, Fanchin F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[19] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[20] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[21] Bellomo B, Franco R Lo and Compagno G 2007 Phys. Rev. Lett. 99 160502
[22] Sarandy M S 2009 Phys. Rev. A 80 022108
[23] Wang C Z, Li C X, Nie L Y and Li J F 2010 J. Phys. B: At. Mol. Opt. Phys. 44 015503
[24] Werner R F 1999 Phys. Rev. A 40 4277
[25] Yu T and Eberly J H 2007 Quantum Inform. Comput. 7 459
[26] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[27] Vacchini B and Breuer H P 2010 Phys. Rev. A 81 042103
[28] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University)
[29] Ferraro E, Scala M, Migliore R and Napoli A 2010 Physica Scripta T140 014042
[30] Bruno B, Rosario L F, Maniscalco M S and Giuseppe C 2010 Physica Scripta T140 014014
[31] Dalton B J, Barnett M S and Garraway B M 2001 Phys. Rev. A 64 053813
[32] Peng J S and Li G X 1996 Introduction to Modern Quantum Optics (Beijing: Science Press) (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|