Chin. Phys. Lett.  2011, Vol. 28 Issue (9): 090503    DOI: 10.1088/0256-307X/28/9/090503
GENERAL |
Generalized Synchronization of Diverse Structure Chaotic Systems
KADIR Abdurahman1,2, WANG Xing-Yuan1**, ZHAO Yu-Zhang2
1Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024
2 School of Engineering & Computer Science, Xinjiang University of Finance and Economics, Urumqi 830012
Cite this article:   
KADIR Abdurahman, WANG Xing-Yuan, ZHAO Yu-Zhang 2011 Chin. Phys. Lett. 28 090503
Download: PDF(621KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Generalized synchronization between two diverse structures of chaotic systems possesses significance in the research of synchronization. We propose an approach based on the Lyapunov stability theory to study it. This method can be used widely. Numerical examples are given to demonstrate the effectiveness of this approach.
Keywords: 05.45.Gg      05.45.Xt     
Received: 13 December 2010      Published: 30 August 2011
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/9/090503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I9/090503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KADIR Abdurahman
WANG Xing-Yuan
ZHAO Yu-Zhang
[1] Ekert A and Jozsa R 1995 Rev. Mod. Phys. 68 733
Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2374
[3] Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65
[4] Miller P and Wang X J 2006 Chaos 16 026109
[5] Earn D J D, Levin S A and Rohani P 2000 Science 290 1360
[6] Rulkov N F, Afraimovich V S, Lewis C T, Chazottes J and Cordonet A 2001 Phys. Rev. E 64 016217
[7] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 3661
[8] Choi M, Volodchenko K V, Rim S, Kye W H, Kim C M, Park Y J and Kim G U 2003 Opt. Lett. 28 101
[9] Pikovsky A S 1992 Phys. Lett. A 165 33
[10] Hunt B R, Ott E and Yorke J A 1997 Phys. Rev. E 55 4029
[11] Yan Z Y 2005 Chaos 15 1310
[12] Grassi G and Miller D A 2002 IEEE Trans. Systems, Circuits And Systems I 49 373
[13] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[14] Rössler O E 1979 Phys. Lett. A 71 155
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 090503
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 090503
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 090503
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 090503
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 090503
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 090503
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 090503
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 090503
[10] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 090503
[11] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 090503
[12] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 090503
[13] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 090503
[14] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 090503
[15] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 090503
Viewed
Full text


Abstract