Original Articles |
|
|
|
|
Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage |
ZHENG An-Shou1;SHEN Xiao-Fang2;LIU Ji-Bing3;BI Jie1,3;DU Qiu-Jiao1,2 |
1College of Mathematics and Physics, China University of Geosciences, Wuhan 4300742Department of Mathematics, Huazhong University of Science and Technology, Wuchang 4300643Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 |
|
Cite this article: |
ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing et al 2008 Chin. Phys. Lett. 25 1195-1197 |
|
|
Abstract We propose an alternative scheme to prepare W state by using superconducting quantum-interference devices (SQIDs) coupled to a largely-detuned cavity. The present scheme is based on evolution by adiabatic passage, where only by tuning adiabatically the Rabi frequencies of the classical microwave pulses we can obtain the standard W state without measurement or any auxiliary SQUIDs. Thus the procedure is simplified and the scheme can be achieved with very high success probability since the errors in dynamical or geometric ways can be avoided. In addition, the SQUID system and the cavity have no probability of being excited state. Thus decoherence caused by the excited-level spontaneous emission or the cavity decay is suppressed.
|
Keywords:
03.67.Mn
85.25.Dq
42.50.Dv
|
|
Received: 18 August 2007
Published: 31 March 2008
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
|
|
[1] Bell J S 1964 Physics 1 195 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Bennett C H, Brassard G and Crepeau C 1993 Phys. Rev.Lett. 70 1895 [4] DiVincenzo D P and Shor P W 1996 Phys. Rev. Lett. 77 3260 [5] Benntt C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [6] Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 [7] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302 [8] Zheng S B 2001 Phys. Rev. Lett. 87 230404 [9] Li G X 2006 Phys. Rev. A 74 055801 Yang W X et al %, Li J H and Zheng A S2006 Commun. Theor. Phys. 47 421 [10] Wang X et al %, Feng M and Sanders B C2003 Phys. Rev. A 67 022302 [11] Wang X 2001 Phys. Rev. A 64 012313 [12] Wu Y et al %, Payne M G, Hagley E W and Deng L2004 Phys. Rev. A 70063812 [13] Wu Y and Deng L 2004 Opt. Lett. 29 1144 [14] Vion D et al 2002 Science 296 886 [15] Yu Y et al 2002 Science 296 889 [16] Chiorescu I et al 2003 Science 299 1869 [17] Vitanov N V et al %, Halfmann T, Shore B W and Bergmann K2001 Ann. Rev. Phys. Chem. 52 763 [18] Bergmann K et al %, Theuer H and Shore B W1998 Rev. Mod. Phys. 70 1003 [19] Deng Z J et al %, Gao K L and Feng M2006 Phys. Rev. A 74 064303 [20] Song K H et al %, Xiang S H, Liu Q and Lu D H2007 Phys. Rev. A 75 032347 [21] Zheng S B 2005 J. Opt. B: Quantum Semiclass. Opt. 7 139 [22] Yang C P et al 2004 Phys. Rev. Lett. 92 117902 [23] Zheng S B 2005 Phys. Rev. Lett. 95 080502 [24] Kis Z and Paspalakis E 2004 Phys. Rev. B 69 024510 [25] Sangouard N et al 2005 Phys. Rev. A 72 062309 [26] Shu J et al %, Zou X B, Xiao Y F and Guo G C 2006 Phys. Rev. A 74 044301 [27] Spiller T P et al 1992 Prog. Low Temp. Phys 13 219 [28] Han S et al 1996 Phys. Rev. Lett. 76 3404 [29] Wu Y 1996 Phys. Rev. A 54 1586 [30] Wu Y and Yang X X 1997 Phys. Rev. A 56 2443 [31] Imamoglu A et al 1999 Phys. Rev. Lett. 83 4204 [32] Yang W X et al 2006 J. Phys. A: Math. Theor. 40 155 [33] Wang L et al %, Puri R R and Eberly J H1992 Phys. Rev. A 46 7192 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|