Chin. Phys. Lett.  2008, Vol. 25 Issue (4): 1191-1194    DOI:
Original Articles |
Optical Realization of Deterministic Entanglement Concentration of Polarized Photons
GU Yong-Jian;XIAN Liang;LI Wen-Dong;MA Li-Zhen
Department of Physics, Ocean University of China, Qingdao 266100
Cite this article:   
GU Yong-Jian, XIAN Liang, LI Wen-Dong et al  2008 Chin. Phys. Lett. 25 1191-1194
Download: PDF(110KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme for optical realization of deterministic entanglement concentration of polarized photons. To overcome the difficulty due to the lack of sufficiently strong interactions between photons, teleportation is employed to transfer the polarization states of two photons onto the path and
polarization states of a third photon, which is made possible by the recent experimental realization of the deterministic and complete Bell state measurement. Then the required positive operator-valued measurement and further operations can be implemented deterministically by using a linear optical setup. All these are within the reach of current technology.
Keywords: 03.67.Hk      03.67.Mn      42.50.Dv     
Received: 09 November 2007      Published: 31 March 2008
PACS:  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I4/01191
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GU Yong-Jian
XIAN Liang
LI Wen-Dong
MA Li-Zhen
[1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A andWootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Gottesman D and Chuang I L 1999 Nature 402 390
[6] Bennett C H, Bernstein H J, Popescu S and Schumacher B1996 Phys. Rev. Lett. 53 2046
[7] Lo H K and Popescu S 1997 LANL e-printquant-ph/9707038
[8] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[9] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[10] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[11] Wang X B and Fan H 2003 Phys. Rev. A 68060302(R)
[12] Morikoshi F 2000 Phys. Rev. Lett. 84 3189
[13] Morikoshi F and Koashi M 2001 Phys. Rev. A 64022316
[14] Gu Y J, Li W D and Guo G C 2006 Phys. Rev. A 73 022321
[15] Gu Y J, Gao P and Guo G C 2005 Chin. Phys. Lett. 22 1592
[16] Ahnert S E and Payne M C 2006 Phys. Rev. A 73022333
[17] Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501
[18] Milburn G J 1989 Phys. Rev. Lett. 62 2124
[19] Chau H F and Wilczek F 1995 Phys. Rev. Lett. 75 748
[20] Gerry C C and Campos R A 2001 Phys. Rev. A 64063814
[21] Lutkenhaus N, Calsamiglia J and Suominen K A 1999 Phys. Rev. A 59 3295
[22] Calsamiglia J and Lutkenhaus N 2001 Appl. Phys. B 72 67
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1191-1194
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1191-1194
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1191-1194
[4] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 1191-1194
[5] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 1191-1194
[6] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1191-1194
[7] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 1191-1194
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1191-1194
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1191-1194
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 1191-1194
[11] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1191-1194
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 1191-1194
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 1191-1194
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 1191-1194
[15] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 1191-1194
Viewed
Full text


Abstract