Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 1972-1975    DOI:
Articles |
On the Conversion of High-Frequency Soliton Solutions to a (1+1)-Dimensional Nonlinear Partial Differential Evolution Equation
Kuetche Kamgang Victor;Bouetou Bouetou Thomas2,3;Timoleon Crepin Kofane 1,3
1Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Cameroon2Ecole Nationale Superieure Polytechnique, University of Yaounde I, PO Box 8390, Cameroon3The Abdus Salam International Centre for Theoretical Physics, PO Box 586, Strada Costiera, II-34014, Trieste, Italy
Cite this article:   
Kuetche Kamgang Victor, Bouetou Bouetou Thomas, Timoleon Crepin Kofane 2008 Chin. Phys. Lett. 25 1972-1975
Download: PDF(118KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract From the dynamical equation of barotropic relaxing media beneath pressure perturbations, and using the reductive perturbative analysis, we investigate the soliton structure of a (1+1)-dimensional nonlinear partial differential
evolution (NLPDE) equation ∂y (∂η+u∂y+(u2/2)∂y )u+α uy+u=0, describing high-frequency regime of perturbations. Thus, by means of Hirota's bilinearization method, three typical solutions depending strongly upon a characteristic dissipation parameter are unearthed.
Keywords: 05.45.Yv     
Received: 08 January 2008      Published: 31 May 2008
PACS:  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/01972
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kuetche Kamgang Victor
Bouetou Bouetou Thomas
Timoleon Crepin Kofane
[1] Vakhnenko V O 1999 J. Math. Phys. 40 2011
[2] Morrison A J and Parkes E J 2003 Chaos SolitonsFractals 16 13
[3] Nayfey A H 1973 Perturbation Methods (New York:Wiley)
[4] Nitropolsky Y A, Samoilenko A M and Martinyuk D I 1993 Systems of Evolution Equations With Periodic and QuasiperiodicCoefficients (Dordrecht: Kluwer)
[5] Fu Z, Liu S and Liu S 2007 J. Phys. A: math. Gen. 40 4739
[6] Tang X Y and Lou S Y 2003 J. Math. Phys. 444000
[7] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[8] Hirota R 1988 Direct Methods in Soliton Theory(Berlin: Springer)
[9] Drazin P G and Johnson R S 1989 Solitons: anIntroduction (Cambridge: Cambridge University Press)
[10] Sch$\ddot{a$fer T and Wayne C E 2004 Physica D 196 90
[11] Sakovich A and Sakovich S 2005 J. Phys. Soc. Jpn. 74 239
[12] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 024004
[13] Sakovich A and Sakovich S 2006 J. Phys. A: Math. Gen. 39 L361
[14] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. A: Math. Theor. 40 5585
[15] Parkes E J 2008 Chaos Solitons Fractals 38154
[16] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 073001
[17] Kakuhata H and Konno K 1999 J. Phys. Soc. Jpn. 48 757
[18] Kuetche K V, Bouetou B T and Kofane T C 2007 J.Phys. Soc. Jpn. 76 126001
[19] Huang G L, Wand D Y and Feraudy H 1997 Geophys.Res. 102 7217
[20] Malykh K V and Ogorodnikov I L 1977 Dynamics ofContinuous Media (Moscow: Novosibirsk)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1972-1975
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1972-1975
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1972-1975
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1972-1975
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1972-1975
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1972-1975
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1972-1975
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1972-1975
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1972-1975
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1972-1975
[11] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1972-1975
[12] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 1972-1975
[13] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 1972-1975
[14] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 1972-1975
[15] XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin . Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation[J]. Chin. Phys. Lett., 2011, 28(2): 1972-1975
Viewed
Full text


Abstract